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Abstract. We develop a family of fast methods for approximating the solutions to a wide
class of static Hamilton–Jacobi PDEs; these fast methods include both semi-Lagrangian and fully
Eulerian versions. Numerical solutions to these problems are typically obtained by solving large
systems of coupled nonlinear discretized equations. Our techniques, which we refer to as “Ordered
Upwind Methods” (OUMs), use partial information about the characteristic directions to decouple
these nonlinear systems, greatly reducing the computational labor. Our techniques are considered in
the context of control-theoretic and front-propagation problems.

We begin by discussing existing OUMs, focusing on those designed for isotropic problems. We
then introduce a new class of OUMs which decouple systems for general (anisotropic) problems. We
prove convergence of one such scheme to the viscosity solution of the corresponding Hamilton–Jacobi
PDE. Next, we introduce a set of finite-differences methods based on an analysis of the role played
by anisotropy in the context of front propagation and optimal trajectory problems.

The performance of the methods is analyzed, and computational experiments are performed
using test problems from computational geometry and seismology.
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1. Introduction. In this paper we present a family of noniterative methods
applicable to the boundary value problem for static Hamilton–Jacobi equations of the
form1

H(∇u,x) = 1, x ∈ Ω ⊂ R2,
u(x) = q(x), x ∈ ∂Ω,

(1)

where the Hamiltonian H is assumed to be Lipschitz-continuous, convex, and homo-
geneous of degree 1 in the first argument:

H(∇u,x) = ‖∇u‖F
(

x,
∇u

‖∇u‖
)

(2)

for some function F . We will further assume that the function q is also Lipschitz-
continuous, and that

0 < F1 ≤ F (x,p) ≤ F2,

q1 ≤ q(x) ≤ q2
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1For the sake of notational clarity we restrict our discussion to R2; all results can be restated
for Rn and for meshes on manifolds.
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for all x ∈ Ω and for all the vectors of unit length p.
Even for arbitrarily smooth H, q, and ∂Ω, a smooth solution on Ω need not

exist. In general, there are infinitely many weak Lipschitz-continuous solutions, but
the unique viscosity solution can be defined using additional conditions on the smooth
test functions (see [10, 9]).

To obtain a numerical solution, one often starts with a mesh X covering the
domain Ω. Let Ui = U(xi) be the numerical solution at the mesh point xi ∈ X.
Denote the set of mesh points adjacent to xi as N(xi) and the set of values adjacent
to Ui as NU(xi) = {Uj |xj ∈ N(xi)}. Let H be a consistent discretization of H such
that one can write

H(Ui, NU(xi),xi) = 1.(3)

If M is the total number of mesh points, then one needs to solve M coupled nonlinear
equations simultaneously. One typical approach is to solve this nonlinear system
iteratively.

Our ultimate goal is to introduce a set of “single-pass” numerical methods. By
this, we mean that each Ui is recalculated at most r times, where r depends only
upon the PDE (1) and the mesh structure and not upon the number of mesh points.

To construct single-pass algorithms with efficient update orderings, one can utilize
the fact that the value of u(x) for the first-order PDE depends only on the value of u
along the characteristic(s) passing through the point x. If xi1 ,xi2 ∈ N(xi) are such
that the characteristic for the mesh point xi lies in the simplex xixi1xi2 , then it is
useful to consider an upwind discretization of the PDE:

H(Ui, Ui1 , Ui2 ,xi) = 1.(4)

This reduces the coupling in the system: Ui depends only upon Ui1 and Ui2 and not on
all of the NU(xi). A recursive construction allows one to build the entire dependency
graph for xi.

If two or more characteristics collide at the point x, the solution loses smoothness.
The entropy condition does not allow characteristics to be created at these collision
points; hence, if xi is far enough from these collision points, then, for a suitably
chosen discretization, its dependency graph is actually a tree. If the characteristic
directions of the PDE were known in advance, then the dependency-ordering of the
grid points would be known as well, leading to a fully decoupled system. Formally,
this construction would lead to an O(M) method.

In general, characteristic directions are not known in advance due to the non-
linearity of (1). Nonetheless, single-pass methods can be devised to determine the
mesh point ordering (and the characteristic directions) in the process of decoupling
the system. We refer to such methods as “Ordered Upwind Methods” (OUMs) and
show that they have computational complexity of O(M logM).

Since (1) can be interpreted as a description of a continuous control problem, we
start in section 2 by viewing the discrete control problem and by considering Dijkstra’s
method as a prototype for the OUMs to be built for the continuous case.

Next, in section 3, we view the Hamilton–Jacobi PDE (1) as an anisotropic min-
time optimal trajectory problem. In this control-theoretic setting, the speed of a
vehicle’s motion depends not only on its position, but also on the direction. The
corresponding value function u is the viscosity solution of the static Hamilton–Jacobi–
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Bellman equation

max
a∈S1

{(∇u(x) · (−a))f(x,a)} = 1, x ∈ Ω,

u(x) = q(x), x ∈ ∂Ω.
(5)

Here, a is the unit vector determining the direction of motion, f(x,a) is the speed of
motion in the direction a starting from the point x ∈ Ω, and q(x) is the time-penalty
for exiting the domain at the point x ∈ ∂Ω. The maximizer a corresponds to the
characteristic direction for the point x.

If the speed functions F and f depend only upon their first argument, both forms
of the Hamilton–Jacobi PDE reduce to the Eikonal equation

‖∇u(x)‖ = K(x),(6)

where K(x) = 1
F (x) = 1

f(x) . In this case, the characteristics of the PDE coincide

with the gradient lines of its viscosity solution u. This property is the foundation for
two single-pass methods for the Eikonal equation: Tsitsiklis’ algorithm (1994) and
Sethian’s Fast Marching Method (1996), representing Dijkstra-like decoupling of a
semi-Lagrangian and a fully Eulerian discretization of (1), respectively (section 4).

We then proceed to the central part of this paper. First, we show (in section 5)
that neither of these single-pass Eikonal solvers can be directly applied in the general
anisotropic case. Nonetheless, the underlying ideas can be used to build the OUMs
which are applicable for much more general equations. Such methods hinge on two
properties of the unique viscosity solution:

1. The viscosity solution u(x) is strictly increasing along the characteristics of
the PDE (1).

2. We can derive a precise upper bound on the maximum angle between the
characteristic and the gradient of u.

In section 6, we introduce the first general OUM with computational complexity
of O(F2

F1
M logM) based on a semi-Lagrangian discretization; an announcement of this

algorithm without details or proof was first made in [39]. The method’s convergence
to the viscosity solution is proven in section 7.

Next, in section 8, we reinterpret the Hamilton–Jacobi PDE (1), this time as
describing an anisotropic front expansion (contraction) problem. In this context,
F (x,n) is interpreted as the speed of the front in the normal direction n, and ∂Ω as
the initial position of the front.

‖∇u‖F
(
x, ∇u

‖∇u‖
)
= 1, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

The anisotropy is the result of the dependence of F on n. The level sets of the
viscosity solution u correspond to the positions of the front at different times. We
consider only those front expansion (contraction) problems in which the speed F is
such that the Hamiltonian H is convex.

The fully Eulerian OUMs, introduced in section 8, use the finite-difference approx-
imations developed as a generalization of the Fast Marching Method and are based
on the analysis of the role played by anisotropy in the front propagation and optimal
trajectory problems. These single-pass methods also have the same computational
complexity of O(F2

F1
M logM). The appendix examines the relationship between the

first-order semi-Lagrangian and Eulerian OUMs.
Finally, in section 9, we analyze the efficiency of the new methods and consider

several anisotropic test problems from computational geometry and seismology.
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2. Dijkstra’s method and discrete optimal trajectories. We begin by con-
sidering the problem of computing the shortest path on a network. (See, for exam-
ple, [3] for a catalogue of available algorithms.) Computing the shortest path can
be viewed as a discrete dynamic programming problem. Here, it serves as a simpler
analogue for the continuous optimal trajectory problem considered in the next section.

For the case in which the network is sparsely connected and all arc-costs are
positive, the heap-sort version of Dijkstra’s method [12] is one of the most widely
used algorithms. We will now reinterpret Dijkstra’s method as a single-pass OUM
since it serves as a model for building the OUMs for the continuous front propagation
and optimal trajectory problems.

2.1. Shortest paths and value function. Consider a discrete network of
nodes X = {x1, . . . ,xM}. A vehicle starts somewhere in the network and travels
from node to node until it reaches one of the exit nodes x ∈ Q ⊂ X. A vehicle’s
trajectory is a sequence of nodes (y1, . . . ,yr) such that yr ∈ Q and yk �∈ Q for k < r.
There is a time-penalty K(xi,xj) = Kij > 0 for passing from xi to xj . (Kij = +∞ if
there is no link from xi to xj .) For all x ∈ Q there is an exit time-penalty q(x) < ∞.
Thus, the total time needed for a trajectory (y1, . . . ,yr) is

TotalTime(y1, . . . ,yr) =

r∑
j=1

K(yj ,yj+1) + q(yr).(7)

The goal is to find the optimal trajectory for each node x ∈ X\Q.
The key idea of dynamic programming [5, 6] is to solve for all of the nodes at

once. Instead of searching for a particular optimal trajectory, one derives an equation
for the value function U(x), defined as the minimum time to exit the network if one
starts at x: 

U(x) = min
all the paths
starting at x

TotalTime(x, . . . ), x ∈ X\Q,

U(x) = q(x), x ∈ Q.

(8)

Bellman’s optimality principle [5] shows the relationship between U(x) and the
values of U on the set of adjacent nodes N(x) = {y ∈ X | K(x,y) < ∞}, namely,

U(x) = min
y∈N(x)

{K(x,y) + U(y)} for all x ∈ X\Q.(9)

Equation (9) is nonlinear, and it has to hold for each node in X\Q. Thus, if there
are M such nodes, we have to solve a coupled system of M nonlinear equations.

2.2. Dijkstra’s method. Dijkstra’s method [12] provides a way of decoupling
system (9) and is based on the following monotonicity observations.

Observation 2.1. If (y1, . . . ,yr) is an optimal trajectory for y1, then we have
U(y1) > · · · > U(yr).

Observation 2.2. If N−(x) = {y ∈ N(x) | U(y) < U(x)}, then Bellman’s
equation (9) can be rewritten as

U(x) = min
y∈N−(x)

{K(x,y) + U(y)} for all x ∈ X\Q.(10)

If the nodes were somehow sorted by the value of U , one could solve equations
(10) one by one, yielding a method with an overall complexity of O(M). Even though
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this ordering on X is not known in advance, Dijkstra’s method reconstructs it (one
node at a time) as follows.

All the nodes are divided into three classes: Far (no information about the
correct value of U is known), Accepted (the correct value of U has been computed),
and Considered (adjacent to Accepted). For every Considered x we define the set
NF(x) = {y ∈ N(x) |y is Accepted}.

1. Start with all the nodes in Far.
2. Move the exit nodes (y ∈ Q) to Accepted (U(y) = q(y)).
3. Move all the nodes x adjacent to the boundary into Considered and evaluate

the tentative values

V (x) := min
y∈NF(x)

{K(x,y) + U(y)} .(11)

4. Find the node x̄ with the smallest value of V among all the Considered.
5. Move x̄ to Accepted (U(x̄) = V (x̄)).
6. Move the Far nodes adjacent to x̄ into Considered.
7. Reevaluate V for all the Considered x adjacent to x̄

V (x) := min {V (x),K(x, x̄) + U(x̄)} .(12)

8. If Considered is not empty, then go to 4.
The described algorithm has the computational complexity of O(M log(M)); the fac-
tor of log(M) reflects the necessity to maintain a sorted list of the Considered val-
ues V (xi) to determine the next Accepted node.2

On a grid-like network, we can reinterpret Dijkstra’s method as an upwind finite
difference scheme. Consider a uniform Cartesian grid of grid size h, where the time-
penalty Kij > 0 is given for passing through each grid point xij = (ih, jh). The
minimal total time-to-exit Uij starting from the node xij can be written in terms of
the minimal total time-to-exit starting at its neighbors:

Uij = min (Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1) + Kij .(13)

As pointed out by Sethian in [36], the Uij obtained through Dijkstra’s method is
formally a first-order approximation to the solution u(x, y) of the differential equation

H(∇u(x), u(x),x) = max(|ux|, |uy|) = K(x),(14)

provided that the time-penalties are Kij = hK(x).

3. Continuous optimal trajectory problems and semi-Lagrangian dis-
cretization.

3.1. Statement of problem. Consider an optimal trajectory problem for a
vehicle moving inside the domain Ω, with the speed f depending upon the direction
of motion and the current position of the vehicle inside the domain. The dynamics of
the vehicle is defined by

y′(t) = f(y(t),a(t))a(t),

y(0) = x ∈ Ω,(15)

2This variant of Dijkstra’s method is often referred to as a heap-sort Dijkstra’s method since its
implementation requires the use of a binary heap, d-heap, or Fibonacci heap to maintain the ordering
of the Considered nodes efficiently [3].

The complexity estimate for the densely connected network would be O(M2 log(M)), but for
our case, when X is a grid or a mesh, the precise complexity estimate is O(rM log(M)), where r is
the maximum number of nodes connected to a single node in X.
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where y(t) is the position of the vehicle at time t, S1 = {a ∈ R2 | ‖a‖ = 1} is the
set of admissible control values, and A = {a : R+,0 �→ S1 | a(·) is measurable} is the
set of admissible controls. We are interested in studying y(t) only while the vehicle
remains inside Ω, i.e., until the exit time

T (x,a(·)) = inf{t ∈ R+,0|y(t) ∈ ∂Ω}.
If the function q(x) ≥ 0 is the time-penalty for exiting the domain at the point
x ∈ ∂Ω, then a min-time optimal trajectory problem is the task of finding an optimal
control a(·) which minimizes the total time:3

TotalTime (x,a(·)) = T (x,a(·)) + q (y (T (x,a(·)))) .

We will alternatively refer to the above quantity as a total cost of using the control:
Cost (x,a(·)) = TotalTime (x,a(·)).

Unless otherwise explicitly specified, we will assume that both f and q are Lip-
schitz-continuous and that there exist constants f1, f2, q1, q2 such that

0 < f1 ≤ f(x,a) ≤ f2 < ∞ for all x ∈ Ω and a ∈ S1,

0 < q1 ≤ q(x) ≤ q2 < ∞ for all x ∈ ∂Ω.(16)

For notational convenience, we will also define the anisotropy coefficient Υ = f2
f1

.
Strictly speaking, since f1 and f2 are global bounds, the coefficient Υ reflects the
measure of anisotropy only in the homogeneous domain (i.e., when f(x,a) = f(a)).
We will use Υ in deriving the worst-case-scenario computational complexity of the
algorithms. In section 9.2, the more accurate local anisotropy coefficient Υ(x) will be
defined and used for a more detailed computational complexity analysis.

As in the discrete case, the key idea of dynamic programming [5] is to define the
value function u(x) such that{

u(x) = infa(·) Cost(x,a(·)), x ∈ Ω\∂Ω,

u(x) = q(x), x ∈ ∂Ω.
(17)

In general, an optimal control a(·) does not have to exist; therefore, when prov-
ing properties of the value function u, one uses ε-suboptimal controls a(·) such that
Cost(x,a(·)) < u(x)+ε. To simplify the presentation, we will somewhat loosely refer
to the optimal controls and trajectories. If such optimal controls do not exist, the
corresponding properties can be formulated and proven for the ε-suboptimal controls
and trajectories.

3.2. Properties of the value function. The following lemmas enumerate sev-
eral well-known properties of the value function (see proofs in [46], for example). In
section 7 we will prove the similar properties of the numerical approximation con-
structed by the OUM.

Lemma 3.1 (Fixed-time optimality principle). Let d(x) be the minimum distance
to the boundary ∂Ω. Then for every point x ∈ Ω\∂Ω and for any τ < d(x)

u(x) = τ + inf
a(·)

{u(y(τ))} ,(18)

3A different optimal trajectory problem can be formulated for minimizing the total cost of moving
the vehicle with a unit speed, when the running cost depends upon both the vehicle’s position and
the direction of motion; see [45, 15], for example. It is not hard to show the equivalence of this
min-cost problem to the min-time optimal trajectory problem considered here [46].
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where y(·) is a trajectory corresponding to a chosen control a(·).
Lemma 3.2 (Fixed-boundary optimality principle). Consider a simple closed

curve Γ ⊂ Ω\∂Ω and an arbitrary point x inside Γ. For every control a(·), we define
TΓ(x,a(·)) to be the earliest time at which the corresponding trajectory y(·) reaches
the curve Γ. Then

u(x) = inf
a(·)

{TΓ (x,a(·)) + u (y (TΓ(x,a(·))))} .(19)

Lemma 3.3. The value function u(x) is Lipschitz-continuous4 and bounded on
Ω\∂Ω. If y′(t) = a(t) defines an optimal trajectory for a point x (i.e., y(0) = x
and u(x) = Cost(x,a(·))), then the function u(y(t)) is strictly decreasing for t ∈
[0, T (x,a(·))].

The following two lemmas utilize the fixed-time optimality principle and provide
the key motivation for constructing OUMs for this problem (sections 6 and 8).

Lemma 3.4. Consider a point x̄ ∈ Ω\∂Ω. Then, for any constant C such that
q2 ≤ C ≤ u(x̄), the optimal trajectory for x̄ will intersect the level set u(x) = C at
some point x̃. If x̄ is distance d1 away from that level set, then

‖x̃ − x̄‖ ≤ d1Υ.(20)

Proof. Let a(·) be an optimal control for x̄. The intersection point x̃ = y(τ)
exists because of the continuity of the value function and of the optimal trajectory:
u(x̄) ≥ C ≥ q2 ≥ u(y(T (x̄,a(·)))).

Therefore,

u(x̄) = τ + u(x̃) ≥ ‖x̃ − x̄‖
f2

+ C.

There also exists some point x̂ on the level set such that ‖x̄ − x̂‖ = d1. Consider a
control a1(t) = x̂−x̄

d1
, and suppose it takes time τ1 to reach x̂ along the corresponding

straight-line trajectory. By the optimality principle,

u(x̄) ≤ τ1 + u(x̂) ≤ d1

f1
+ C.

Thus, ‖x̃ − x̄‖ ≤ d1Υ.
Lemma 3.5. Consider an unstructured (triangulated) mesh X of diameter h

on Ω. Consider a simple closed curve Γ ⊂ Ω\∂Ω with the property that for any
point x on Γ there exists a mesh point x̂ inside Γ such that ‖x − x̂‖ < h. Suppose a
mesh point x̄ is such that u(x̄) ≤ u(xi) for all the mesh points xi ∈ X inside Γ. The
optimal trajectory for x̄ will intersect Γ at some point x̃ such that

‖x̃ − x̄‖ ≤ hΥ.(21)

Proof. Let a(·) be an optimal control for x̄. The intersection point x̃ = y(τ)
exists because of the continuity of Γ and of the optimal trajectory. Therefore,

u(x̄) = τ + u(x̃) ≥ ‖x̃ − x̄‖
f2

+ u(x̃).

4This holds in the interior of Ω even in the presence of state constraints: the assumption f1 > 0
is sufficient for the local controllability near ∂Ω (as defined in [4], for example).
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Let x̂ be a mesh point inside Γ such that ‖x̃ − x̂‖ ≤ h. Consider a control a1(t) =
x̃−x̂

‖x̃−x̂‖ , and let τ1 be the time required to reach x̃ from x̂ using a1(·). Then, by the

optimality principle,

u(x̂) ≤ τ1 + u(x̃) ≤ h

f1
+ u(x̃).

To complete the proof, we recall that u(x̄) ≤ u(x̂).

3.3. Hamilton–Jacobi–Bellman PDE. As in the discrete case, Bellman’s op-
timality principle can be used to formally derive the local equation for u(x) if the value
function is smooth around x:

min
a∈S1

{(∇u(x) · a)f(x,a)} + 1 = 0, x ∈ Ω,

u(x) = q(x), x ∈ ∂Ω.
(22)

The above Hamilton–Jacobi–Bellman PDE can be rewritten in the form H(∇u,x) =
1, where the Hamiltonian H = −mina∈S1

{(p·a)f(x,a)} = maxa∈S1
{(p·(−a))f(x,a)}.

Moreover, this Hamiltonian is convex and homogeneous of degree one in the first ar-
gument; thus, this PDE belongs to the class of problems described in section 1. We
also note that the characteristics of this PDE can be formally shown to be the optimal
trajectories for the corresponding min-time control problem.

In an important case of isotropic optimal speed function (f(x,a) = f(x)), equa-
tion (22) reduces to the Eikonal equation ‖∇u(x)‖ = 1

f(x) . We particularly emphasize

one property of the Eikonal equations: if ∇u is defined at the point, then the mini-
mizer is a = −∇u

‖∇u‖ . Thus, the gradient lines of u(x) coincide with the characteristics

of the Eikonal PDE (i.e., the optimal trajectories for the isotropic min-time control
problem). This is the main reason for the following causality property, a foundation
for the noniterative Eikonal solvers.

Property 3.6 (Causality for the Eikonal equation). If ∇u(x) is defined and
xx1x2 is a sufficiently small acute simplex, which contains the characteristic for x,
then u(x) ≥ max{u(x1), u(x2)}.

Unfortunately, a smooth solution to (22) might not exist even for smooth f , q,
and ∂Ω. Generally, this equation has infinitely many weak Lipschitz-continuous so-
lutions, but the unique viscosity solution [10] can be defined using the conditions on
smooth test functions [9] as follows.

A bounded, uniformly continuous function u is the viscosity solution of (22) if the
following holds for each smooth test function5 φ ∈ C∞

c (Ω):
(i) if u − φ has a local minimum at x0 ∈ Ω, then

min
a∈S1

{(∇φ(x0) · a)f(x0,a)}+ 1 ≤ 0;(23)

(ii) if u − φ has a local maximum at x0 ∈ Ω, then

min
a∈S1

{(∇φ(x0) · a)f(x0,a)}+ 1 ≥ 0.(24)

Moreover, the optimality principle (Lemma 3.1) can be used to demonstrate that
the value function of the min-time optimal trajectory problem satisfies the inequalities

5The standard definition of the viscosity solution (see [9, 8], for example) uses the test functions
φ ∈ C1(Ω). However, as shown in [9], the definition using the test functions φ ∈ C∞

c (Ω) is equivalent.
This second formulation enables us to use the upper bounds on the second derivatives of φ in the
convergence proof in section 7.
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(24) and (23) and thus is the viscosity solution of the Hamilton–Jacobi–Bellman PDE
(see [8, 7] or [16], for example6).

3.4. Modified definition of the viscosity solution. Define Sφ,x
1 = {a ∈ S1 |

a ·∇φ(x) ≤ −‖∇φ(x)‖Υ−1}. In [46] we demonstrate that using Sφ,x0

1 instead of S1 in
the inequalities (24) and (23) yields an equivalent definition of the viscosity solution
for (22).

Proof. We first observe that, since f > f1 > 0, if the minimum is attained for

some a = a1, then (a1 · ∇φ(x0)) < 0. Let b = −∇φ(x0)
‖∇φ(x0)‖ . Since a1 is the minimizer,

we have

(∇φ(x0) · a1)f(x0,a1) ≤ (∇φ(x0) · b)f(x0, b) ≤ −‖∇φ(x0)‖f1.

Therefore,

a1 · ∇φ(x0) ≤ −‖∇φ(x0)‖ f1

f(x0,a1)
≤ −‖∇φ(x0)‖Υ−1.

Remark 3.7. We have just established a bound on the angle between the char-
acteristic of the PDE (22) and the gradient line of its viscosity solution. If the gradi-
ent∇u(x0) exists, then∇u(x0) = ∇φ(x0). Therefore, a1·∇u(x0) ≤ −‖∇u(x0)‖Υ−1.
If γ is the angle between ∇u(x0) and (−a1), then cos(γ) ≥ 1

Υ . (If the level sets of u(x)
were straight lines, the last inequality would trivially follow from Lemma 3.4.) We
note that the above argument heavily uses the existence of a positive lower bound f1

and, therefore, does not directly apply to more general control problems.

3.5. A semi-Lagrangian discretization for the Hamilton–Jacobi–Bellman
PDE. Assume that a triangulated mesh X of diameter h is defined on Ω. For every
mesh point x ∈ X, define S(x) to be a set of all the simplexes in the mesh adjacent
to x (i.e., the simplexes that have x as one of their vertices). If s ∈ S(x), we will use
the notation xs,1 and xs,2 for the other vertices of the simplex s.

A simple control-theoretic discretization of (19) follows from the assumption that,
as the vehicle starts to move from a mesh point x inside a simplex s ∈ S(x), its
direction of motion a does not change until the vehicle reaches the edge xs,1xs,2 (see
Figure 1). The value u(x̃) at the point of intersection can be approximated7 using
the values u(xs,1) and u(xs,2).

Defining τ(ζ) = ‖x̃ − x‖ = ‖(ζxs,1 + (1 − ζ)xs,2) − x‖ and aζ = x̃−x
τ(ζ) , we can

now write the equation for the numerical approximation U :

U(x) = min
s∈S(x)

Vs(x),

Vs(x) = min
ζ∈[0,1]

{
τ(ζ)

f(x,aζ)
+ ζU(xs,1) + (1− ζ)U(xs,2)

}
.(25)

The above “naive” derivation is based on a direct application of Bellman’s optimality
principle rather than on discretization of the corresponding Hamilton–Jacobi–Bellman

6The control-theoretic problems discussed in these papers are slightly different. They consider
infinite horizon or exit time problems with time-discounted running costs, e.g., Cost(x,a(·)) =∫∞
0 e−λsK(y(s),a(s))ds. Thus, the resulting PDE is also slightly different, but Kruzhkov’s trans-
form [24] can be used to obtain the mapping from one to another; see [8], [4], for example. In
addition, the iterative methods in these papers are also applicable for a more general case of f1 = 0.

7Since the interpolation has to be used to approximate the value at a non–mesh point x̃, we refer
to this and similar discretizations as semi-Lagrangian.
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xs1

xs2

a

x

x

Fig. 1. A control-theoretic discretization: each trajectory is approximated by a straight line
within a simplex.

PDE; a number of related methods, treatment of more general control problems (in-
cluding the case f1 = 0), and the proof of convergence can be found in [25, 26],
and [18]. Similar higher-order control-theoretic numerical methods can be found
in [17].

The discretized equation (25) has to be satisfied at every mesh point in X; this
results in a coupled system of M nonlinear equations, which usually have to be solved
simultaneously through the iterations. Due to the structure of the system, each
iteration involves solving a local minimization problem for each mesh point, and
even in the simplest problems the number of iterations will be proportional to the
diameter of the mesh-graph. The number of iterations can be reduced using Gauss–
Seidel relaxation (as in [18]), but we know of no theoretical guarantees of the rate of
convergence.

4. OUMs for the isotropic case: Dijkstra-like Eikonal solvers. Until
recently, the Eikonal equation, corresponding to the isotropic optimal trajectory and
front propagation problems, was the only case for which single-pass methods were
available. Several fast algorithms have been introduced to solve the corresponding
discretized system as efficiently as Dijkstra’s method solves the shortest path problems
on discrete networks. These methods are based on an observation that a particular
upwind discretization possesses a causality property similar to that of the Eikonal
equation (Property 3.6).

Property 4.1 (Causality). If s is an acute simplex in S(x) and Vs(x) is a value
of U(x) computed under the assumption that the characteristic for x lies in s, then
Vs(x) ≥ max{U(xs,1), U(xs,2)}.

Any upwind discretization possessing this property leads to equations which can
be decoupled by computing the value function at the mesh points in the increasing
order. Since the ordering is not known in advance, we can structure these Dijkstra-like
solvers in the spirit of section 2.2 as follows.

All the mesh points are divided into three classes: Far (no information about the
correct value of U is known), Accepted (the correct value of U has been computed),
and Considered (adjacent to Accepted), for which V has already been computed, but
it is still unclear if V = U . For every Considered x, we define the set NS(x) =
{s ∈ S(x) | xs,1 and xs,2 are Accepted}. We will also use a set S(x1,x2) to denote
the simplexes adjacent to both of these mesh points.

1. Start with all the mesh points in Far.
2. Move the mesh points on the boundary (y ∈ ∂Ω) to Accepted (U(y) = q(y)).
3. Move all the mesh points x adjacent to the boundary into Considered and
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evaluate the tentative values

V (x) := min
s∈NS(x)

Vs(x).(26)

4. Find the mesh point x̄ with the smallest value of V among all the Considered.
5. Move x̄ to Accepted (U(x̄) = V (x̄)).
6. Move the Far mesh points adjacent to x̄ into Considered.
7. Reevaluate V for all the Considered x adjacent to x̄

V (x) := min

{
V (x), min

s∈(S(x,x̄)
⋂

NS(x))
Vs(x)

}
.(27)

8. If Considered is not empty, then go to 4.
Such Dijkstra-like methods use heap-sort data structures to achieve Dijkstra-like effi-
ciency of O(M logM) and compute the numerical solutions converging to the viscosity
solution (due to the upwinding structure of discretization).

The first Dijkstra-like method, introduced by Tsitsiklis in 1994, evolved from
studying isotropic min-cost optimal trajectory problems and was based on a direct
approximation of the characteristic directions at each mesh point [44, 45]. Tsit-
siklis proved that Property 4.1 holds for the particular first-order semi-Lagrangian
discretization (i.e., formula (25)) of the Eikonal equation, when used on a uniform
Cartesian grid in Rn. The algorithm requires solving a local minimization problem to
update the solution at each mesh point; however, as shown in [45], the Kuhn–Tucker
optimality conditions can be used to find a quadratic equation satisfied by the mini-
mum value instead. In the appendix we provide a more general proof that the same
causality property is possessed by the discretization (25) on an arbitrary unstructured
mesh and derive the corresponding quadratic equation for the minimum value.

The family of Fast Marching Methods, introduced by Sethian in [33] and extended
by Sethian and several co-authors in [35, 21, 38], evolved from studying isotropic front
propagation problems (see section 8.1 for the recasting of Eikonal PDE in this con-
text). Those discretizations were based on upwinding approximations of the gradient
and were all obtained in a fully Eulerian frame of reference. Sethian proved that the
causality Property 4.1 holds for a wide class of upwind finite-difference discretizations.
Following that approach, upwind finite-difference operators were then used to obtain
higher-order Cartesian versions [35], extensions to triangulated meshes [21], and gen-
eral higher-order versions for the unstructured meshes in Rn [38]. In addition, the
“lifting-to-surface” technique introduced in [38] allowed the Fast Marching Method
to be used to solve a limited class of non-Eikonal (elliptically anisotropic) problems.
We note that these extensions are all OUMs, relying on an upwinding criterion that
establishes a monotonicity-preserving update procedure. Early applications of the
Fast Marching Methods included the narrow band level set method [1], photolithog-
raphy [34], a comparison of a similar algorithm with volume-of-fluid techniques [19],
and a fast algorithm for image segmentation [27]. More recent applications include
problems in robotic navigation [22], extension velocity computation [2], visibility eval-
uation [35], geophysics [32, 37], and computational geometry [23]. To produce an up-
date for each mesh point, these methods require solving a quadratic equation, which
will depend on the particular upwind finite-difference operator used. The original
Fast Marching Method, as defined in [33], was based on the first-order Godunov-type
discretization on a uniform Cartesian grid, and the corresponding quadratic update
equation coincides with the equation derived from the Kuhn–Tucker conditions in [45].
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(See the appendix for a discussion of the correspondence between the first-order semi-
Lagrangian and fully Eulerian discretizations on unstructured meshes.)

Several different higher-order versions of the Fast Marching Method are available
for structured and unstructured meshes, while there are currently no higher-order
Dijkstra-like methods based on a semi-Lagrangian approach. The reason is the diffi-
culty of finding the higher-order semi-Lagrangian discretization that would provably
possess the causality property. Finally, when such a discretization is found, it will
generally require performing a local minimization at every mesh point, since it is not
obvious whether the Kuhn–Tucker conditions can be used to produce a quadratic
equation in this more general case.

5. Characteristics versus gradients. In this section, we show why the Dijkstra-
like methods cannot be directly applied to handle general (non-Eikonal) Hamilton–
Jacobi equations. As a test problem, consider the “distance from the origin” Eikonal
equation (‖∇d‖ = 1, d(0, 0) = 0), in a plane z = c1x + c2y for some vector c =

[
c1
c2

]
.

The level sets of d will be just the circles around the origin in that plane. Projecting
those circles orthogonally onto the x− y plane, we will see a set of concentric ellipses.
As expected, the function u(x), whose level sets coincide with these ellipses, may be
obtained in two ways:

• As an optimal-trajectory problem. The function d can be considered as a value
function for a vehicle moving with a unit speed in the plane z = c1x + c2y.
As shown in [46], if one considers another vehicle which moves as a shadow of
the first one in the x−y plane, its value function will be the viscosity solution
u(x) of the Hamilton–Jacobi–Bellman equation

min
a∈S1

{(∇u(x) · a)f(x,a)}+ 1 = 0, x ∈ Ω,(28)

and the vehicle’s speed function in the direction a =
[
a1

a2

]
will be given by

f(a, x, y) =
(
1 + (c1a1 + c2a2)

2
)− 1

2 .

• As a front propagation problem. As shown in [36], this same problem can be
viewed in the front propagation framework, using the speed function

F (x,n) =

√
(1 + c2

2)n
2
1 + (1 + c2

1)n
2
2 − 2c2c1n1n2

1 + c2
1 + c2

2

.

The Hamilton–Jacobi PDE corresponding to this speed function F is√
(1 + c2

2)u
2
x(x) + (1 + c2

1)u
2
y(x)− 2c2c1ux(x)uy(x)

1 + c2
1 + c2

2

= 1.(29)

It would appear that Tsitsiklis’ algorithm (defined for the isotropic case in sec-
tion 4) can be applied to this anisotropic problem without any changes at all, except
that the dependence of the speed f upon the direction a will now be present in the
update-from-a-single-simplex formula:

Vs(x) = min
ζ∈[0,1]

{
τ(ζ)

f(x,aζ)
+ ζU(xs,1) + (1− ζ)U(xs,2)

}
.(30)

What happens when this algorithm is used to compute the expansion of the ellipse
(as defined by (28))? In Figure 2 we show the level sets of the numerical solution
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Fig. 2. (a) and (b) Ellipse expansion computed by Tsitsiklis’ algorithm. Both computations
were performed on a 129 × 129 uniform Cartesian grid. (c) The characteristics and the gradient
directions for the second expanding ellipse.

U obtained by this method for two different expanding ellipses. The first contour

plot corresponds to the vector c =
[√

2
0

]
. The numerical solution converges to the

value function u(x) and is first-order accurate as the grid size tends to 0. (We will
return to this example later when we discuss fast methods relying on a particular grid
orientation in section 5.) The second contour plot corresponds to the vector c =

[
1
1

]
.

In this case, it is obvious that U(x) does not approximate the viscosity solution very
well. Nor does it improve under a grid refinement.

In order to understand what is different in the second example, we recall that all
Dijkstra-like methods are fundamentally dependent on the causality property (3.6) of
the Eikonal equation. Each of these single-pass methods is based on the observation
that a certain discretization also possesses a similar causality property. This causality
results from the fact that the characteristics of the Eikonal equation coincide with
the gradient lines of its viscosity solution u. However, for the anisotropic problems
this property does not hold. When the characteristic and gradient directions are
different, the simplex xxjxk may contain the characteristic for the point x, even if
the gradient ∇u(x) is not pointing from that simplex. Thus, no matter how small
that simplex is, it is still possible that u(x) < u(xj). This is an intrinsic problem
with Dijkstra-like methods in the anisotropic case: to produce the numerical solu-
tion efficiently, these methods attempt to compute U(x) in the ascending order (i.e.,
from the simplex containing (−∇u)), whereas, in order to maintain the upwinding,
U(x) has to be computed from the simplex containing the characteristic. That phe-
nomenon is also quite obvious from comparing Figures 2(b) and 2(c): the Dijkstra-like
method fails exactly at those points where the gradient line and the characteristic do
not lie in the same coordinate quadrant (or, more generally, in the same simplex—
the quadrants are used because the numerical solution in Figure 2 is computed on a
Cartesian grid).

However, it is still possible that, for a given PDE and for a chosen discretization
scheme, Dijkstra-like decoupling will produce a convergent numerical solution, pro-
vided that it is used on a specially oriented grid (e.g., Figure 2(a)). A criterion based
on this observation was introduced by Sethian in [36] as follows.

Criterion 5.1 (Applicability of the Fast Marching Method). For a static
Hamilton–Jacobi equation H(∇u,x) = 0, if the convex Hamiltonian H is approxi-
mated on a Cartesian grid by a consistent difference operator

Hij(Ui,j , Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1,xi,j) = 0,
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and if it is known that Ui,j depends only on the smaller values of U at the neighboring
points, then the Fast Marching Method can be used to compute Ui,j’s efficiently.

Remark 5.2. In the context of upwinding discretizations on unstructured meshes,
the above criterion is equivalent to requiring that the characteristics and the (nu-
merically approximated) vector (−∇u) should always lie in the same simplex. Sev-
eral sufficient conditions for a class of numerical Hamiltonians to satisfy the above
criterion on Cartesian grids were presented by Osher and Fedkiw in [29]. For in-
stance, the causality property was proven in [29] for the Godunov-type upwinding
discretization HG

ij , provided that the original Hamiltonian H(∇u,x) has a special

form H(∇u,x) = G(u2
x, u

2
y) for some function G. We note that, even for a relatively

simple elliptical front propagation (29), this condition is satisfied only in the case
when c1 or c2 is equal to zero, i.e., only when the axes of the ellipse are exactly
aligned with the grid coordinate directions. This is precisely the situation illustrated
by Figure 2(a).

In general, finding discretizations which satisfy Criterion 5.1 is a difficult task.
We note the following problems associated with this approach:

• Whether or not the criterion is satisfied depends upon a particular grid/mesh-
orientation. Indeed, the two test problems in Figure 2 are actually the same
(modulo a rotation by 45◦), yet only one of them satisfies the criterion.

• For any anisotropic problem, there are infinitely many grid orientations such
that the criterion is not satisfied. If an angle between the characteristic and
the gradient line is not zero, then any grid line lying inside that angle will
violate the criterion. Correspondingly, the bigger the anisotropy coefficient Υ
is, the harder it is to find the grid orientation satisfying the criterion.

• The criterion is infinitely sensitive to grid perturbations.
• If the criterion is not satisfied, the numerical solution does not lose stability
under grid refinement. In other words, when it does not work, it is not
immediately obvious.

• If the criterion is not satisfied even at a single grid point, the numerical
solution need not converge to the viscosity solution. Criterion 5.1 is the basis
for determining the order for computing the values of U . Computing even
one of them from a wrong quadrant can greatly affect the ordering of the
remaining computations.

• For many anisotropic problems, the criterion cannot be satisfied for any choice
of the grid directions. Indeed, if the angle between gradient lines and the
characteristics is sufficiently wide, and if the medium is substantially inho-
mogeneous (i.e., if the speed f(x,a) varies significantly in different parts
of Ω), then any Cartesian grid might violate Criterion 5.1 for some grid point
x ∈ X.

As a result, we have chosen to concentrate on a family of robust single-pass methods,
which are independent of the grid choice8 and applicable to a wider class of control
problems. Nevertheless, for the limited class of problems in which Criterion 5.1 can
be analytically demonstrated for a certain choice of grid, the original Dijkstra-like
solvers will perform better than the new OUMs introduced in the next section.

8Of course, it is just the fact of convergence that is independent of the grid choice for our methods;
the speed of convergence is certainly influenced by the choice of the grid and its alignment with the
shock lines.

In fact, if the computational mesh is not fixed for some application-specific reasons, the con-
vergence of our single-pass methods can be further improved by using the computed characteristic
information to dynamically add the mesh points inside the AF , wherever the shock is suspected.
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5.1. Causality in the Hamilton–Jacobi–Bellman PDE. A different (weaker)
causality property for the more general Hamilton–Jacobi–Bellman equation results
from Bellman’s optimality principle (see section 3). Since the characteristics of that
PDE are, in fact, the optimal trajectories of the corresponding control problem, we
know that the value function u is strictly increasing along the characteristics. Our
OUMs for the general anisotropic problems will be based on the fixed-boundary op-
timality principle (Lemma 3.2).

Let u(x) be the value function for the anisotropic min-time optimal trajectory
problem defined on Ω in section 3. We will use the notation Tx̂(x) for the minimum
time required to reach the point x̂ starting from the point x. If Γ is a simple closed
curve in Ω\∂Ω and a point x is inside Γ, then Lemma 3.2 shows that

u(x) = inf
x̂ ∈ Γ

{Tx̂(x) + u(x̂)} .

Because of the properties of the speed function f and by the continuity of Γ, that
infimum is actually a minimum achieved at some point x̃, i.e., u(x) = Tx̃(x) + u(x̃).
The point x̃ can be interpreted as an intersection of the optimal trajectory for x
with the curve Γ. Thus, knowing u on Γ is sufficient for evaluating u at any point
inside Γ. Moreover, if Γ is a level set of u(x), then, by Lemma 3.4, we know that
‖x̃−x‖ ≤ d1Υ, where Υ = f2

f1
and d1 is the distance from x to Γ (see Figure 3). The

last observation9 necessary for constructing a computational algorithm is that, if d1

is small relative to the size of Γ, then the optimal time Tx̃(x) cannot be much smaller
than the time required to traverse the straight line trajectory from x to x̃.

6. Control-theoretic OUM. We now describe our control-theoretic OUM,
which was first discussed without convergence proof in [39]. Consider an unstruc-
tured triangulated mesh X of diameter h (i.e., if the mesh points xj and xk are
adjacent, then ‖xj − xk‖ ≤ h).

Let xj and xk be two adjacent mesh points. Define the upwinding approximation
for U(x) from a “virtual simplex” xjxxk:

Vxj ,xk(x) = min
ζ∈[0,1]

{
τ(ζ)

f(x,aζ)
+ ζU(xj) + (1− ζ)U(xk)

}
,(31)

where τ(ζ) = ‖(ζxj + (1− ζ)xk)− x‖ and aζ =
(ζxj+(1−ζ)xk)−x

τ(ζ) .

Remark 6.1. The above update formula is basically the same as the upwind
formula for simplex s given by (25). The difference is that Vxj ,xk(x) is defined even
when xj and xk are not adjacent to x.

Control-theoretic OUM for anisotropic problems. As before, mesh points
are divided into three classes (Far, Considered, Accepted). The AcceptedFront is
defined as a set of Accepted mesh points, which are adjacent to some not-yet-accepted
(i.e., Considered) mesh points. Define the set AF of the line segments xjxk, where
xj and xk are adjacent mesh points on the AcceptedFront, such that there exists a
Considered mesh point xi adjacent to both xj and xk. For each Considered mesh
point x we define the “near front” as the part of AF “relevant to x”:

NF(x) = {xjxk ∈ AF | ∃x̃ on xjxk s.t. ‖x̃ − x‖ ≤ hΥ} .

9Since Γ generally is not a level set of u, the logic of the method is more subtle and cannot really
be based on Lemma 3.4. Instead, it relies on Lemma 3.5, which provides a weaker version of this
inequality, but for any Γ “well-resolved” by an underlying mesh X.
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Fig. 3. The AcceptedFront and the Considered mesh points. Segments of AF are shown in
bold. The optimal trajectory for x̄ cannot intersect AF too far away from x̄, for if ‖x̃ − x̄‖ > hΥ,
then u(xi) < u(x̄).

1. Start with all the mesh points in Far.
2. Move the mesh points on the boundary (y ∈ ∂Ω) to Accepted (U(y) = q(y)).
3. Move all the mesh points x adjacent to the boundary into Considered and

evaluate the tentative values

V (x) := min
xjxk∈NF(x)

Vxj ,xk(x).(32)

4. Find the mesh point x̄ with the smallest value of V among all the Considered.
5. Move x̄ to Accepted (U(x̄) = V (x̄)) and update the AcceptedFront.
6. Move the Far mesh points adjacent to x̄ into Considered and compute their

tentative values by (32).
7. Recompute the value for all the other Considered x such that x̄ ∈ NF(x)

V (x) := min

{
V (x), min

x̄xi∈NF(x)
Vx̄,xi(x)

}
.(33)

8. If Considered is not empty, then go to 4.
We note that the resulting algorithm

• is “single-pass,” since it produces the numerical solution U in O(Υ2M log(M))
steps. This is because there are a total of M points to Accept, every time
a mesh point is accepted there are at most Υ2 Considered points to re-
evaluate, and we must maintain an ordering of Considered based on V , which
contributes a factor of log(M).

• produces the numerical solution U that converges to u as the diameter of the
mesh tends to zero (see the proof in section 7);

• is at most first-order accurate;
• works equally well on acute and nonacute triangulated meshes;
• is applicable for a general anisotropic optimal trajectory problem described

in section 3.
An extension of this method to Rn and manifolds is straightforward, since the update
formula (31) can easily be generalized for these cases. The only part of the program
which needs to be modified to handle a manifold-approximating mesh is the algorithm
for sorting and searching the AcceptedFront.

Remark 6.2 (Comments on computational complexity).
1. In the above complexity analysis, the calculation of an upwind-update-from-

a-single-simplex value Vxj ,xk(x) was counted as a single operation. We note that
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the optimization problem solved to compute Vxj ,xk
(x) is local (i.e., Vxj ,xk

(x) can be
computed independently from any other Vxi,xm(xl)) and, thus, should not be confused
with the iterations necessary to solve the coupled system of nonlinear equations (25)
simultaneously. More details on algorithmic efficiency can be found in section 9.

2. As we will show in section 7, AF can be considered as an approximation for
a level set of U . Thus, if the mesh diameter h is sufficiently small, then the number
of Considered points which have to be updated after each acceptance becomes closer
to Υ, since the Considered points are immediately adjacent to AF . Thus, as h
decreases, the computational complexity of the method tends to O (ΥM log(M)).

3. If the problem is formulated in Rn, the complexity of the corresponding
algorithm is O(Υn−1M log(M)), where M remains the total number of mesh points.

Remark 6.3 (A comment on the rate of convergence). Our proof of convergence
in section 7 does not provide an estimate for the rate of convergence. We believe that
this method is first-order; this belief is based on the first-order accuracy of the ap-
proximations behind the semi-Lagrangian discretization (used to calculate Vxj ,xk

(x))
and is also confirmed by the numerical evidence (see section 9.4 and [38, 46]). Based
on numerical experiments, we note that for sufficiently small h, ‖U − u‖∞ is at worst
O(Υh). This is not surprising, since Υh is the largest distance over which the first-
order accurate approximation might be performed when Vxj ,xk(x) is computed.

Remark 6.4 (A comment on mesh degeneracy). The fast Eikonal solvers de-
scribed in section 4 rely on the causality property, which holds only for the acute
simplexes. An additional “splitting section” construction is required to handle the
nonacute case [21, 38]. Not surprisingly, the acuteness of simplexes in X is not
required for the OUM introduced here. After all, the algorithm uses the mesh con-
nectivity only to determine what becomes Considered, when a new mesh point is
Accepted. All of the upwind-update-from-a-single-simplex values Vxj ,xk

(x) are com-
puted from the simplexes defined by the position of AcceptedFront rather than from
the simplexes present in X.

Nevertheless, in order to prove the convergence of U(x) to the viscosity solution,
we will have to assume that the mesh X cannot be arbitrarily degenerate. Namely,
we will assume that if h is the diameter of X and hmin is the smallest triangle height
in X, then the ratio η = h/hmin is bounded for all sufficiently small h. See the proof
of Lemma 7.5 for details.

Remark 6.5 (A comment on the order of Acceptance). Unlike in Sethian’s Fast
Marching Methods or in Tsitsiklis’ algorithm, in the above method the mesh points
are not Accepted in the order of increasing U . As was pointed out in section 5,
for the anisotropic optimal trajectory problems the fact that the characteristic for x
lies inside the simplex xxjxk does not mean that the gradient is pointing from that
simplex. Thus, it is entirely possible that U(x) ≤ Vxj ,xk

(x) < U(xj). Nevertheless,
we will show in Lemma 7.3 that the order of Acceptance is monotone, albeit in a
much weaker sense than for the single-pass Eikonal solvers.

Remark 6.6 (Decoupling of the “extended semi-Lagrangian scheme”). Define the
extended set of neighbors

NK(x) = {x1x2 ∈ X | x1 and x2 are adjacent and ∃x̃ on x1x2 s.t. ‖x̃ − x‖ ≤ hΥ} .

Note that if we replace NF(x) by NK(x), the formula (32) becomes

U(x) = min
x1x2∈NK(x)

Vx1x2(x).(34)
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This is an “extended” version of the semi-Lagrangian scheme (25), and it is easy
to show that its solution U converges to the viscosity solution u. Equation (34)
can be solved by successive approximation techniques described in [18], for example.
However, a single-pass algorithm cannot be used to find U since we need to consider all
possible directions of motion for the vehicle starting at the point x (i.e., U(x) might
potentially depend upon U(y) for all y ∈ NK(x), including the values U(y) > U(x)).
Therefore, the formula (32) can be interpreted as an upwinding analogue of (34).

The above comparison is just an analogue—not an equivalence. The numerical
values produced by executing the above OUM will be different from those obtained by
solving the coupled system (34); thus, the convergence of the OUM has to be proven
separately.

7. Proof of convergence. In this section we prove the convergence of the above
algorithm to the viscosity solution.10

We will assume that the numerical solution U(x) is computed for each x ∈ X,
using the OUM described in section 6. For the points x ∈ Ω\X, U(x) is defined by
linear interpolation as follows.

If x is inside Ω but is not a mesh point, then it lies in some simplex x1x2x3. In
that case, there exist ζ1, ζ2, ζ3 ≥ 0 such that

ζ1 + ζ2 + ζ3 = 1, ζ1x1 + ζ2x2 + ζ3x3 = x.(35)

The value at x is defined to be U(x) = ζ1U(x1) + ζ2U(x2) + ζ3U(x3).
Suppose that hmin is the smallest triangle height in the mesh X. We will use the

constant η = h
hmin

to characterize the degree of “degeneracy” of the mesh X.

7.1. Properties of the numerical solution. The following lemmas demon-
strate several properties of the numerical solution U , which are necessary to prove
the convergence and also mirror the properties of the value function for the optimal
trajectory problem (section 3.2).

7.1.1. Is NF(x) big enough? Suppose that the mesh point x̄ is about to be
Accepted (hence, V (x̄) = minx∈Considered V (x)).

Lemma 7.1. For every Considered mesh point x define

W (x) = min
x1x2∈AF

min
ζ∈[0,1]

{
τ(ζ)

f(x,a)
+ (ζU(x1) + (1− ζ)U(x2))

}
,(36)

where τ(ζ) = ‖(ζx1 + (1− ζ)x2)− x‖ and a = ζ(x1−x)+(1−ζ)(x2−x)
τ(ζ) . If x̄ is about to

be Accepted, then U(x̄) = V (x̄) = W (x̄).
Proof. First, U(x̄) = V (x̄) simply because x̄ is about to be Accepted.
Recall that V (x) for every Considered mesh point x is computed by formula (32)

as follows:

V (x) = min
x1x2∈NF(x)

min
ζ∈[0,1]

{
τ(ζ)

f(x,a)
+ (ζU(x1) + (1− ζ)U(x2))

}
,

10As of now, we do not know of any natural discretized version of the Hamilton–Jacobi–Bellman
PDE that would be exactly satisfied by the numerical solution U(x) produced by the OUM in
section 6. Since U(x) is defined constructively (i.e., by an algorithm to compute it), we cannot rely
on properties of a discretized equation for the proof of convergence; thus, the proof in this section
has to rely on the properties of the algorithm itself.
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where NF(x) is the part of the AcceptedFront “relevant to x”: NF(x) = {x1x2 ∈
AF | ∃x̃ on the line segment x1x2 s.t. ‖x̃ − x‖ ≤ hΥ}. Since NF(x) ⊂ AF , we
immediately see that for any Considered mesh point x

V (x) ≥ W (x).(37)

Let x1x2 ∈ AF and ζ ∈ [0, 1] be such that the minimum in formula (36) is attained;
i.e., if x̂ = (ζx1 + (1− ζ)x2), then

W (x̄) =
‖x̂ − x̄‖

f(x̄, x̂−x̄
‖x̂−x̄‖ )

+ (ζU(x1) + (1− ζ)U(x2)) .(38)

Let x3 be the Considered mesh point adjacent to both x1 and x2. Then U(x̄) =
V (x̄) ≤ V (x3) since x̄ is about to be accepted. V (x3) is also computed by formula
(32); thus,

V (x3) ≤ ‖x̂ − x3‖
f(x3,

x̂−x3

‖x̂−x3‖ )
+ (ζU(x1) + (1− ζ)U(x2)) ≤ h

f1
+ (ζU(x1) + (1− ζ)U(x2)) .

Combining this with the inequalities (37) and(38), we obtain

‖x̂ − x̄‖
f2

+ (ζU(x1) + (1− ζ)U(x2)) ≤ W (x̄) ≤ V (x̄) ≤ V (x3)

≤ h

f1
+ (ζU(x1) + (1− ζ)U(x2)) ,

which implies ‖x̂ − x̄‖ ≤ hΥ. Therefore, x1x2 ∈ NF(x̄) and W (x̄) = V (x̄).

7.1.2. Uniform upper bound.
Lemma 7.2. If Ω is convex and d(x) is the distance from x ∈ Ω to the bound-

ary ∂Ω, then

U(x) ≤ d(x)

f1
+ q2.(39)

Proof. If x ∈ ∂Ω, then the inequality holds trivially since 0 ≤ q(x) ≤ q2.
If x is a mesh point inside Ω, we prove the lemma by induction: assume that

the inequality (39) holds for all the mesh points that are on the AcceptedFront just
before x = x̄ is Accepted. Consider a (possibly nonunique) shortest path from x̄ to
the boundary. By the properties of the distance function d(·), that shortest path is
a straight line. Moreover, suppose that line intersects the segment of AcceptedFront
x1x2 ∈ AF at the point x̂ = (ζx1 + (1 − ζ)x2). It is trivial to show that d(x̄) =
d(x̂) + ‖x̂ − x̄‖. Using Lemma 7.1,

U(x̄) = W (x̄) ≤ ‖x̂ − x̄‖
f(x̄, x̂−x̄

‖x̂−x̄‖ )
+ (ζU(x1) + (1− ζ)U(x2)) .

Based on the assumption of induction,

U(x̄) ≤ ‖x̂ − x̄‖
f1

+ ζ

(
d(x1)

f1
+ q2

)
+ (1− ζ)

(
d(x2)

f1
+ q2

)
.
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By the convexity of Ω, the distance-to-boundary function d(x) is concave and d(x̂) ≥
ζd(x1) + (1− ζ)d(x2). Therefore,

U(x̄) ≤ 1

f1
(‖x̂ − x̄‖+ d(x̂)) + q2 =

d(x̄)

f1
+ q2,

which completes the proof by induction. (The base of induction is obvious, since only
the mesh points on the boundary ∂Ω are already Accepted when the algorithm starts.)

If x is inside Ω but is not a mesh point, then it lies in some simplex x1x2x3 and
there exist ζ1, ζ2, ζ3 ≥ 0 such that

ζ1 + ζ2 + ζ3 = 1, x = ζ1x1 + ζ2x2 + ζ3x3, U(x) = ζ1U(x1) + ζ2U(x2) + ζ3U(x3).
(40)

Once again, using the concavity of the distance function,

U(x) ≤ ζ1

(
d(x1)

f1
+ q2

)
+ ζ2

(
d(x2)

f1
+ q2

)
+ ζ3

(
d(x3)

f1
+ q2

)
≤ q2 +

1

f1
(ζ1d(x1) + ζ2d(x2) + ζ3d(x3)) ≤ d(x)

f1
+ q2.

The obtained bound is “uniform” since it is independent of the diameter h of the
mesh X. We also note that a uniform upper bound on U can be derived even for a
nonconvex Ω, assuming that η remains bounded and the boundary ∂Ω is adequately
represented by the mesh as h tends to zero.

7.1.3. Relaxed monotonicity of the Accepted. In contrast with Dijkstra-
like Eikonal solvers, the OUM introduced in section 6 is not computing (and accepting)
the values in a monotone fashion: “xi is Accepted after xj” does not imply “U(xi) ≥
U(xj)” (see Remark 6.5). However, a weaker monotonicity property can still be
formulated, based on the evolution of AF during the computation. Recall that AF
is defined as the set of the line segments xjxk, where xj and xk are adjacent mesh
points on the AcceptedFront such that there exists a Considered mesh point xi

adjacent to both xj and xk. Define UAF
min (and UAF

max) as the min (max) value of U
on the set AF . Note that, since U is defined by the linear interpolation, both UAF

min

and UAF
max are attained at the mesh points.

The following definitions are useful for discussing the evolution of AcceptedFront:

— AFx̄ is the state of AF immediately before x̄ is Accepted.

— U
AFx̄
min and U

AFx̄
max are the minimum and maximum values of U on AFx̄.

— AF x̄ is the state of AF immediately after x̄ is Accepted.

— UAF x̄

min and UAF x̄

max are the minimum and maximum values of U on AF x̄.

Lemma 7.3 (Monotonicity of AF ’s evolution). Suppose that hmin is the smallest
triangle height in the triangulated mesh X on Ω. Then the following weak monotonic-
ity results hold for the numerical solution U :

(i)

U
AFx̄
min +

hmin

f2
≤ U(x̄) ≤ UAFx̄

max +
h

f1
.(41)

(ii)

U
AFx̄
min ≤ UAF x̄

min .(42)



www.manaraa.com

ORDERED UPWIND METHODS FOR STATIC HJ PDEs 345

(iii) If xi is Accepted before xj , then U
AFxi
min ≤ U

AFxj

min .

(iv) If U
AFx̄
max ≤ U

AFx̄
min + h

f1
, then UAF x̄

max ≤ UAF x̄

min + h
f1
.

Proof. (i) Let x1 be a mesh point on AFx̄ such that U(x1) = U
AFx̄
min . Since it

is on AcceptedFront immediately before x̄ is Accepted, there exists at that time a
Considered mesh point x2 adjacent to x1. Thus,

V (x2) ≤ U(x1) +
‖x2 − x1‖

f(x2,
x2−x1

‖x2−x1‖ )
.

Since x̄ is about to be Accepted, U(x̄) = V (x̄) ≤ V (x2) ≤ U
AFx̄
min + h

f1
. On the other

hand,

U(x̄) = V (x̄) = U(x̃) +
‖x̃ − x̄‖

f(x̄, x̃−x̄
‖x̃−x̄‖ )

for some x̃ ∈ AFx̄. Thus, U(x̄) ≥ U
AFx̄
min + hmin

f2
.

(ii) As x̄ is Accepted, several mesh points might be removed from the AcceptedFront,
but the only point possibly added to the AcceptedFront is x̄ itself. (x̄ will be added

if there still is a not-yet-Accepted mesh point adjacent to it.) Since U
AFx̄
min ≤ U(x̄), it

follows that U
AFx̄
min ≤ UAF x̄

min .
(iii) This point follows trivially by induction from the inequality (42).
(iv) Since x̄ is the only point possibly added to the AcceptedFront,

UAF x̄

max ≤ max
(
UAFx̄
max , U(x̄)

) ≤ U
AFx̄
min +

h

f1
≤ UAF x̄

min +
h

f1
.

Remark 7.4. It immediately follows from the above Lemma that if q2 ≤ q1+h/f1,
then UAF

max ≤ UAF
min + h/f1 at all times. Thus, if the exit time-penalty q is approxi-

mately constant on ∂Ω, then the AF will be approximately a level set of U throughout
the computation. Moreover, even if q is not approximately constant, the AF will still
approximate a level set of U as soon as UAF

min becomes bigger than (q2 − h/f1).

7.1.4. Uniform Lipschitz-continuity.
Lemma 7.5. (i) Let L1 = η/f1. If x1 and x2 are two adjacent mesh points

inside Ω, then

|U(x1)− U(x2)| ≤ L1‖x1 − x2‖.(43)

(ii) Let L2 = ηL1. If ∇U(x) is defined for some x ∈ Ω\∂Ω such that d(x) > h
(i.e., x is not in a simplex immediately adjacent to ∂Ω), then

‖∇U(x)‖ ≤ L2.(44)

(iii) Finally, for arbitrary points x1,x2 ∈ Ω,

|U(x1)− U(x2)| ≤ L2‖x1 − x2‖.(45)

Proof. (i) Suppose that x1,x2 ∈ Ω\∂Ω are two adjacent mesh points. Without
loss of generality, assume that x1 was Accepted before x2. Thus, immediately before
x2 is Accepted, x1 will still be on the AcceptedFront and

U(x2) ≤ ‖x1 − x2‖
f(x2,

x1−x2

‖x1−x2‖ )
+ U(x1) ≤ ‖x1 − x2‖

f1
+ U(x1) ≤ L1‖x1 − x2‖+ U(x1).
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Since U ’s are not necessarily Accepted in the ascending order, it is not generally true
that U(x2) ≥ U(x1), but from Lemma 7.3,

U(x1) ≤ U
AFx1
min +

h

f1
≤ U

AFx2
min +

h

f1
≤ U(x2)+

h

f1

= U(x2)+ η
hmin

f1
≤ U(x2)+L1‖x1−x2‖,

which concludes the proof of inequality (43).
(ii) Let x1,x2,x3 be the vertices of the simplex in the mesh X which contains

x. Since d(x) > h, we know that x1, x2, and x3 are also inside Ω, i.e., not on the
boundary. Inside each simplex, U is defined by the linear interpolation, and ∇U is a
constant. Whatever the direction of ∇U , a straight line parallel to it passes through
one of the vertices and intersects the opposite side of the triangle. Without loss of
generality, assume that that line passes through x1 and intersects the side x2x3 at
the point x4. Since x4 lies on x2x3, either (x2 − x1) · (x4 − x1) ≥ ‖x4 − x1‖2 or
(x3 − x1) · (x4 − x1) ≥ ‖x4 − x1‖2. Without loss of generality, assume the latter.
Since ‖x4 − x1‖ ≥ hmin,

‖∇U‖hmin ≤ ‖∇U‖‖x4 − x1‖ = |U(x4)− U(x1)| ≤ |U(x3)− U(x1)| ≤ L1h.

Thus, ‖∇U‖ ≤ L1
h

hmin
= L2.

(iii) This point is obvious, since U is piecewise linear, with the slope bounded by
L2 in every simplex.

Remark 7.6. Better estimates of L1 and L2 can be derived if f and q are smooth
and h is sufficiently small. However, to prove the uniform convergence of U to the
value function u, it is just necessary to show that some such L2 independent of h
does indeed exist. The dependence of L2 upon η is not dangerous: if the triangulated
mesh Xr does not become more and more “degenerate” as hr → 0, then ηr will be
bounded.

7.2. Convergence to a viscosity solution.
Theorem 7.7. Consider a sequence of meshes {Xr} such that hr → 0 but

ηr = hr

hrmin
< η as r → ∞. Let Ur be the approximate solution obtained on the mesh

Xr by the algorithm described in section 6. As hr → 0, Ur uniformly converges to the
viscosity solution of (22) (defined by the inequalities (23) and (24) in section 3.3).

Proof. Since {Ur} are bounded and uniformly Lipschitz-continuous, by the Arzela–
Ascoli theorem, there exists a subsequence {Xp} of the sequence {Xr} such that
hp → 0 as p → ∞, and a function u such that Up → u uniformly as p → ∞. Bound-
edness and uniform continuity of u immediately follow from the properties of Up.

(i) Consider any function φ ∈ C∞
c (Ω), and suppose that (u− φ) has a strict local

minimum at x0 ∈ Ω. Define Bδ to be the closed ball of radius δ around x0. Then
there exists some δ > 0 such that Bδ ⊂ Ω and x ∈ Bδ implies

(u − φ)(x0) < (u − φ)(x).(46)

If D2(x) is the matrix of second derivatives of φ(x), then there exists µ > 0 such that
‖D2(x)‖2 ≤ µ for all x ∈ Bδ. Now let x0

p be a minimum point for (Up −φ) over Bδ;
from (46) and from the uniform convergence of Up’s it follows that

lim
p→∞x0

p = x0.(47)
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If x0
p is not a mesh point of Xp and lies in the interior of some simplex s, we define

x1
p to be the vertex of s closest to it. If x0

p lies on the edge of a simplex, we take
x1

p to be the closest endpoint of that edge; finally, we use x1
p = x0

p if x0
p is a mesh

point. In any case, since φ is smooth and Up is linear on every simplex, we know that
Up(x1

p)− Up(x0
p) = ∇φ(x0

p) · (x1
p − x0

p) and

(Up − φ)(x1
p) ≤ (Up − φ)(x0

p) +
µhp

2

2
.(48)

Moreover, using inequality (48), we obtain for every x ∈ Bδ

φ(x)−φ(x1
p) = (φ(x)−φ(x0

p))+(φ(x0
p)−φ(x1

p))

≤(Up(x)−Up(x0
p))+

(
Up(x0

p)−Up(x1
p)+

µhp
2

2

)
=Up(x)−Up(x1

p)+
µhp

2

2
.

(49)

Since ‖x0
p − x1

p‖ ≤ hp, it is also clear that limp→∞ x1
p = x0. So, for big enough p,

hpΥ ≤ δ; thus, by the update formula (31), there exists x̃p ∈ AFx1
p

⋂
Bδ such that

Up(x1
p) =

τp
f(x1

p,ap)
+ Up(x̃p),(50)

where τp = ‖x̃p − x1
p‖ and ap = x̃p−x1

p

‖x̃p−x1
p‖ .

Using the smoothness of φ, the inequality (49), and the equality (50), we obtain

∇φ(x1
p) · ap +

1

f(x1
p,ap)

≤ φ(x1
p + τpa

p)− φ(x1
p)

τp
+

1

f(x1
p,ap)

+ τpµ

≤ Up(x1
p + τpa

p)− Up(x1
p) + (µhp

2/2)

τp
+

1

f(x1
p,ap)

+ τpµ

=
Up(x̃p)− Up(x1

p) + τp/f(x1
p,ap)

τp
+

µhp
2

2τp
+ τpµ =

µhp
2

2τp
+τpµ.(51)

Since x̃ lies on the AFx1
p and τp = ‖x̃p − x1

p‖, it is at least as big as the minimal

triangle height in the mesh Xp, i.e., τp ≥ hp

η . On the other hand, τp ≤ hpΥ because

x̃p ∈ NF(x1
p). Combining these bounds with inequality (51), we see that

∇φ(x1
p) · ap +

1

f(x1
p,ap)

≤ µ
(η

2
+ Υ

)
hp.(52)

The sequence {ap} has to have a subsequence converging to some vector b ∈ S1;
we restrict our attention to that subsequence, but will still use the subscript p to
avoid further cluttering of the notation. Now we can use the continuity of f , the
smoothness of φ, and the uniformity of convergence of Up to pass to a limit as p → ∞
in the inequality (52):

∇φ(x0) · b +
1

f(x0, b)
≤ 0 =⇒ (∇φ(x0) · b)f(x0, b) + 1 ≤ 0,

which completes the first half of the proof, since

min
a∈S1

{(∇φ(x0) · a)f(x0,a)} ≤ (∇φ(x0) · b)f(x0, b).
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(ii) Consider any function φ ∈ C∞
c (Ω), and suppose that (u−φ) has a strict local

maximum at x0 ∈ Ω. Define Bδ to be the closed ball of radius δ around x0. Then
there exists some δ > 0 such that Bδ ⊂ Ω and x ∈ Bδ implies

(u − φ)(x0) > (u − φ)(x).(53)

If ∇φ(x0) = 0, then the inequality (24) is trivially satisfied. Thus, we will further
assume that ‖∇φ(x)‖ ≥ ν > 0 for all x ∈ Bδ. If D2(x) is the matrix of second
derivatives of φ(x), then there exists µ > 0 such that ‖D2(x)‖2 ≤ µ for all x ∈ Bδ.
Now let x0

p be a maximum point for (Up − φ) over Bδ; from (53) and from the
uniform convergence of Up’s it follows that

lim
p→∞x0

p = x0.(54)

If x0
p is not a mesh point of Xp and lies in the interior of some simplex s, we define

x1
p to be the vertex of s closest to it. If x0

p lies on the edge of a simplex, we take
x1

p to be the closest endpoint of that edge; finally, we use x1
p = x0

p if x0
p is a mesh

point. In any case, since φ is smooth and Up is linear on every simplex, we know that
Up(x1

p)− Up(x0
p) = ∇φ(x0

p) · (x1
p − x0

p) and

(Up − φ)(x1
p) ≥ (Up − φ)(x0

p)− µhp
2

2
.(55)

Moreover, using the inequality (55), we obtain for every x ∈ Bδ,

φ(x)− φ(x1
p) = (φ(x)− φ(x0

p)) + (φ(x0
p)− φ(x1

p))

≥ (Up(x)− Up(x0
p)) +

(
Up(x0

p)− Up(x1
p)− µhp

2

2

)
= Up(x)− Up(x1

p)− µhp
2

2
.

(56)

Since ‖x0
p − x1

p‖ ≤ hp, it is also clear that limp→∞ x1
p = x0. As proven in

section 3.4,

min
a∈S1

{(∇φ(x0) · a)f(x0,a)} = min
a∈Sφ,x0

1

{(∇φ(x0) · a)f(x0,a)}.(57)

Thus, to prove (24), we need to consider only a ∈ Sφ,x0

1 , i.e., only a such that

a · ∇φ(x0) ≤ −Υ−1‖∇φ(x0)‖ ≤ −νΥ−1.(58)

Suppose that a particular a ∈ Sφ,x0

1 was chosen. We would like to show that, for
sufficiently small hp,

(*) if we start at x1
p and go some distance τp = O(hp) in the direction a, then we

will have to intersect the AFx1
p .

If the local maximum were attained at the mesh point (i.e., the case x1
p = x0

p)
and the test function φ were linear, then (*) would be almost obvious: φ would be
linearly decreasing in the direction a, and so would Up, because of the local maximum
condition, and, as we know from Lemma 7.3,

Up(x) ≥ U
AFx1p

min +
hp
ηf2
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for every mesh point x ∈ Xp Accepted after the point x1
p. Since φ is generally not

linear and x1
p �= x0

p, we will have to be more careful.
Suppose we start moving from x1

p in the direction a for some time tp. Using the
inequality (56), the smoothness of φ, and the inequality (58), we obtain

Up(x1
p + tpa)− Up(x1

p) ≤ (φ(x1
p + tpa)− φ(x1

p)) +
µhp

2

2

≤
(

tp(∇φ(x1
p) · a) + µtp

2

2

)
+

µhp
2

2
≤ −νtpΥ

−1 + µ
hp

2 + tp
2

2
.(59)

In order to prove (*) we will need the following inequality to be satisfied:

−νtp
f1

f2
+ µ

hp
2 + tp

2

2
≤ −hp

f1
.(60)

Let tp = Ahp. We will now show that the constant A can be chosen such that (60)
holds for small enough hp. Indeed, (60) can be rewritten as

h2
p

(
µ
1 + A2

2

)
+ hp

(
1

f1
− νA

f1

f2

)
≤ 0.(61)

If A is such that ( 1
f1

− νA f1
f2

) > 0, then we also have that (60) is satisfied for all

hp ∈ [0, (νA f1
f2

− f2)
2

µ(1+A2) ]. Thus, choosing any A > (
f2
2

νf1
), we ensure that (60) is

satisfied for the sufficiently small hp. Combining this with the inequality (59) and
using the monotonicity result in Lemma 7.3, we see that

Up(x1
p + tpa) ≤ Up(x1

p)− hp
f1

≤ U
AFx1p

min ,

i.e., the point (x1
p + tpa) cannot be inside the AFx1

p . Since x1
p is inside AFx1

p ,
that means that (*) holds: there exists some τp ∈ [0, tp] such that

x̃p = (x1
p + τpa) ∈ AFx1

p .

By Lemma 7.1,

Up(x1
p) = W p(x1

p) ≤ τp
f(x1

p,a)
+ Up(x̃p).(62)

The remainder of the proof is similar to what we have done to prove (i).
Using the smoothness of φ, the inequality (56), and the inequality (62), we obtain

∇φ(x1
p) · a +

1

f(x1
p,a)

≥ φ(x1
p + τpa)− φ(x1

p)

τp
+

1

f(x1
p,a)

− τpµ

≥ Up(x1
p + τpa)− Up(x1

p)− (µhp
2/2)

τp
+

1

f(x1
p,a)

− τpµ

=
Up(x̃p)− Up(x1

p) + τp/f(x1
p,a)

τp
− µhp

2

2τp
− τpµ ≥ −µhp

2

2τp
− τpµ.(63)

Since x̃ lies on the AFx1
p and τp = ‖x̃p − x1

p‖, it is at least as big as the minimal

triangle height in the mesh Xp, i.e., τp ≥ hp

η . On the other hand, τp ≤ tp = Ahp,
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where A is a constant chosen for this particular φ, but independent of hp. Combining
these bounds with inequality (63), we see that

∇φ(x1
p) · a +

1

f(x1
p,a)

≥ −µ
(η

2
+ A

)
hp.(64)

We can now use the continuity of f , the smoothness of φ, and the uniformness of
convergence of Up to pass to a limit as p → ∞ in the inequality (64):

∇φ(x0) · a +
1

f(x0,a)
≥ 0 =⇒ (∇φ(x0) · a)f(x0,a) + 1 ≥ 0,

which completes the proof of inequality (24), since a was chosen to be an arbitrary

vector in Sφ,x0

1 .
In this proof we have several times passed to a subsequence. If some other subse-

quence of Ur converges to a different limit ū, the above argument could be repeated
for that subsequence to prove that ū also satisfies (23) and (24). The uniqueness of
the viscosity solution (proven in [10, 9]) implies u = ū; thus, the entire sequence Ur

converges to u uniformly as r → ∞.

7.3. Additional comments. First, the above proof of convergence, as well as
the preceding lemmas, can be easily repeated for the corresponding method in higher
dimensions. Moreover, if the update formula (31) in the description of the method is
replaced by any other update-from-a-single-simplex formula such that

1. the update formula is consistent (converges to the PDE as h → 0),
2. the update formula is upwinding (the update is computed/accepted only from

the simplex, which contains the characteristic direction), and
3. the update formula is stable (there exists a uniform bound for U),

then the resulting numerical solutions should converge to the viscosity solution of the
Hamilton–Jacobi–Bellman PDE. This conjecture is the basis for the methods based
on finite-difference discretization discussed in section 8.2.

Second, the above proof uses the continuity of the speed function f , but not the
Lipschitz-continuity. Thus, if the viscosity solution can be defined for f ∈ C(Ω), then
the above proof will still be valid. The majority of the control-theoretic papers to
which we are referring in this work require the speed of motion f (or, equivalently, the
running cost K) to be Lipschitz-continuous. Nevertheless, the value function u can
be defined for a much broader class of control problems, including those for which f is
discontinuous. Some examples of our method applied to such problems can be found
in section 9.4. Numerical evidence confirms that the method described above works
correctly in that more general case. This is not surprising, since Bellman’s optimality
principle is valid even when the speed f(x,a) is very ill-behaved, and our numerical
methods merely mimic the logic of that principle.

8. Front propagation problems and OUMs. Anisotropic aspects of front
propagation have been studied in several different contexts, including geometric op-
tics, geophysics, tomography, and crystal growth; our primary emphasis is on an
application-neutral analysis, concentrating on the properties of the particular class of
static Hamilton–Jacobi PDEs. We begin with the correspondence between anisotropic
optimal trajectory problems and a class of anisotropic front expansion (contraction)
problems described in section 8.1. Our goal is to determine a set of the anisotropic
front expansion (contraction) problems, which can be solved efficiently by our semi-
Lagrangian OUM, and to construct a family of OUMs based on fully Eulerian dis-
cretizations.
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8.1. Front propagation problems: Static Hamilton–Jacobi approach.
Consider a simple curve Γt moving in R2 in the direction normal to itself with some
speed F (x,n), where n is an “outwards pointing” unit vector normal to the curve
as it passes through the point x. If the curve is not smooth, then n is not defined,
but a geometric construction based on a variant of Huygens’ principle can still be
used to define the evolution of Γt. An important subclass of the front propagation
problems consists of applications in which the speed function F never changes sign.
If the function F is strictly positive (or negative), then the front always expands (or
contracts). This implies that the front passes through each point only once. Thus,
we can define u(x) to be the arrival time: u(x) = t ⇐⇒ x ∈ Γt. If F is always

nonnegative, the outwards unit normal vector can be expressed as n(x) = ∇u(x)
‖∇u(x)‖

and, assuming that n(x) is always defined, it is straightforward to show that the
arrival time u satisfies the PDE

‖∇u(x)‖F
(

x,
∇u(x)

‖∇u(x)‖
)

= 1,(65)

u = 0 on Γ0.

This is a static Hamilton–Jacobi PDE of the form H(∇u,x) = 1, where the
Hamiltonian H is homogeneous of degree one in the first argument. To interpret (65)
where ∇u does not exist, one normally uses the unique viscosity solution, as defined
in [9, 10]. As follows from the results in [14] and [41], the level sets of the viscosity
solution u of (65) will correspond to the evolution of Γ0 defined by Huygens’ principle.

We note that, in general, the Hamiltonian H(∇u,x) = ‖∇u‖F (x, ∇u
‖∇u‖ ) is not

convex. As shown in [14], such H(∇u,x) can always be considered as a result of
a differential game model. Several iterative numerical schemes are based on this
approach (see [4] or [16], for example). However, if H is convex, it can be alternatively
considered as a product of a dual min-time optimal control problem [41]. Using two
interpretations of the Hamiltonian, we can show that the speeds F and f are related
by a homogeneous Legendre transform:

F (x,n) = max
a∈S1

{(n · (−a))f(x,a)},(66)

f(x,a) = min
n∈S1, (n·a)<0

{
F (x,n)

(−n · a)
}

.(67)

Remark 8.1. We note that F (x,n) is the speed of the front’s movement in

the direction normal to itself (here, n = ∇u(x)
‖∇u(x)‖ ), whereas f(x,a) is the speed of the

vehicle’s motion in the direction a. Correspondingly, the correct n is fully determined
by the gradient direction of the function u(x), while the optimal a ∈ S1 is determined
by the direction of the characteristic passing through the point x and, therefore, is a
function of the particular Hamilton–Jacobi–Bellman equation. In the isotropic case,
however, there is no difference since (66) yields f(x) = F (x).

Define the vehicle’s speed profile Sf (x) = {af(x,a) | a ∈ S1}, its flipped (center
symmetry applied) version S−f (x) = {−af(x,a) | a ∈ S1}, and the front propagation
speed profile SF (x) = {nF (x,n) | n ∈ S1}. The formulas (66) and (67) can now be
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Fig. 4. (a) Using Sf to construct SF ; (b) using SF to construct Sf .

interpreted geometrically:11

— F (x,n) can be obtained by projecting S−f (x) onto a unit vector n and then
by taking the maximum of this (signed) projection (see Figure 4(a));

— S−f (x) can be obtained as an envelope of lines perpendicular to n drawn at
every point of SF (x) (see Figure 4(b)).

By the above construction, Sf is always convex. Thus, different optimal trajectory
problems will yield the same Hamilton–Jacobi–Bellman equation, provided that the
speed profiles have the same convex hull.12 See [30] and the references therein for an
additional discussion of Wulff shapes and mutual properties of functions related by
the homogeneous Legendre transform.

Finally, we note that the correspondence between these two types of anisotropic
problems can be used to build an alternative definition of Huygens’ principle: using
scaled speed profiles S−f at each point of the wavefront instead of the circles of front-
direction-dependent radius; see [14], [40], or [46].

8.2. OUMs for Eulerian discretizations. Given 0 < F1 ≤ F (x,n) < F2 for
all x and n, we can use the formula (67) to prove that 0 < F1 = f1 ≤ f(x,a) < f2 =
F2 for all x and a. Thus, the corresponding control problem can be treated by the
OUMs with the semi-Lagrangian update formula described in section 6.

We now proceed to construct the OUMs for the fully Eulerian approximation of
‖∇u‖F (x, ∇u

‖∇u‖ ) = 1. The key idea is that any consistent upwind finite difference

discretization can be used to compute an update-from-a-single-simplex Vxj ,xk
(x).

Our derivation of such discretizations generalizes the approach used in defining the
Fast Marching Method on unstructured meshes given in [38].

11In wave physics, F (x,n) corresponds to the “phase velocity” if n is the direction normal to the
wavefront [11]. In crystalline variational problems, F (x,n) corresponds to the “surface free energy”
if n is the direction normal to the surface [43]. Additionally, f(x,a) corresponds to the “group
velocity,” i.e., the speed with which a blob of energy is moving in the direction a [11]. Finally,
this speed profile is often referred to as a “ray surface” or “impulse-response surface” [11, 31].
The corresponding object in crystalline variational problems is the “Wulff shape”—the shape which
minimizes the free surface energy for a fixed volume with no additional constraints [43].

12Similar geometric construction is common in tomography; the formulas (67) and (66) are related
to the inverse Radon transform [20]. Analytic expressions for F in terms of f and for f in terms of F
can be easily derived for R2 (see [30, 46], for example). Similar formulas expressing the relationship
between the group speed and the phase speed were known in wave physics [28] at least as early as
1837.
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8.2.1. Upwind finite-difference discretization. Consider an unstructured
triangulated mesh X of diameter h (i.e., if the mesh points xj and xk are adjacent,
then ‖xj − xk‖ ≤ h). Let xj and xk be two adjacent mesh points and choose some

other mesh point x ∈ Ω\∂Ω. Define the unit vectors P1 =
x−xj

‖x−xj‖ and P2 = x−xk

‖x−xk‖ .
Assume that P1 and P2 are linearly independent, and consider the 2× 2 nonsingular
matrix P having P1 and P2 as its rows. Let vr(x) be the value of the directional
derivative for the direction Pr evaluated at the point x. Assuming that the function
u is differentiable at x, we have P∇u(x) = v(x), where v(x) =

[
v1(x)
v2(x)

]
. Recall that

the front propagation equation (65) can be written as ‖∇u(x)‖2F 2(x, ∇u(x)
‖∇u(x)‖ ) = 1,

which can be restated in terms of v(x):

v(x)T (PPT )−1v(x)F 2

(
x,

P−1v(x)

‖P−1v(x)‖
)

= 1.(68)

To obtain the discretized equation, we now replace each vr with a difference
approximation: vr(x) ≈ wr ≡ arU + br, where the br’s linearly depend on the values
of U (and possibly of ∇U for higher-order schemes) at the mesh points xj and xk.

Remark 8.2. In general, the choice of the difference approximation will depend
upon the structure of the mesh and will also affect the rate of convergence of the
method. The simplest first-order finite-difference approximation is obtained by choos-
ing

a1 =
1

‖x − xj‖ , b1 =
−U(xj)

‖x − xj‖ , a2 =
1

‖x − xk‖ , b2 =
−U(xk)

‖x − xk‖ .

Higher-order accurate operators can be built using the computed value for ∇U at the
mesh points (see [38, 46] for further details).

For convenience, let Q = (PPT )−1 and use v(x) ≈ w(x) = Vxj ,xk
(x)a+b. Then

the discretized version of (68) can be used as an equation for the upwind-update-
from-a-single-simplex Vxj ,xk(x):

(
(aTQa)(Vxj ,xk(x))2 + (2aTQb)Vxj ,xk(x) + (bTQb)

)
F 2

(
x,

P−1w

‖P−1w‖
)

= 1.(69)

Remark 8.3. In the isotropic case, the analogous equation was just a quadratic
(see the appendix and [38]). Equation (69) is a more complex nonlinear equation
since w(x) also depends on Vxj ,xk(x). In general, this equation will have to be
solved approximately, and the overall efficiency of the method will also depend on the
iterative numerical method used to solve (69). Since these iterations are generally
unavoidable, we will consider solving this equation as a single operation in the further
analysis of computational complexity. We note that the iterative zero-finding required
to compute Vxj ,xk(x) is local (i.e., Vxj ,xk(x) can be computed independently from
any other Vxi,xl(xm)) and thus should not be confused with the iterations necessary
to solve a coupled system of nonlinear equations (such as (25)) simultaneously.

8.2.2. Upwinding criterion and combined update formula. We need to
ensure that the value of Vxj ,xk(x) computed from (69) is truly upwind, i.e., that the
characteristic for the mesh point x lies inside the simplex xxjxk. The approximate
gradient P−1(Vxj ,xk(x)a+ b) can be used to compute an approximation to the char-
acteristic direction a(x). For Rn, the requirement that the characteristic direction
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should point into the simplex xx1 . . .xn is equivalent to the condition that all the
elements of the vector (PT )−1a(x) should be positive.

The unfortunate feature of this upwinding criterion is that it is based on the ap-
proximate rather than the exact characteristic direction. Due to the approximation
error, it is possible that an upwinding criterion will not be satisfied even though the
true characteristic for the mesh point x lies inside the simplex xxjxk. If that sim-
plex is small enough, this can happen only when one of the elements of the vector
(PT )−1a(x) is close to zero, i.e., only when the characteristic direction almost coin-
cides with (−P1) or (−P2). That corresponds to the situation in which U(x) can be
computed based on either U(xj) or U(xk). Thus, we define the “one-sided-update”
formula in a manner consistent with the control-theoretic perspective:

Vxi(x) =
‖xi − x‖

f(x, xi−x
‖xi−x‖ )

+ U(xi).(70)

Therefore, the final formula for the upwind-update-from-a-single-simplex becomes

Vxj ,xk(x) =


solution of (69) if P1 and P2 are linearly independent

and the upwinding criterion is satisfied,

min(Vxj (x), Vxk(x)) otherwise.

(71)

Using the finite-difference update formula (71) instead of the formula (31) in the
algorithm described in section 6, we obtain a new OUM for solving the front expansion
problem (Hamilton–Jacobi equation (65)). In fact, this defines a whole family of such
methods, since different upwind finite-difference operators can be used to approximate
wr(x) in (68).

We note that the resulting methods
• are single-pass and have the same computational complexity as the semi-

Lagrangian OUM introduced in section 6,
• work equally well on acute and nonacute triangulated meshes,
• are applicable for a general anisotropic optimal trajectory problem described

in section 3,
• can be easily extended to Rn and manifolds. (The generalizations of the

mapping n �→ a, of (68), and of the upwinding criterion are obvious.)
Remark 8.4 (Convergence). In the appendix, we show the connection between

a particular first-order Eulerian OUM (based on Remark 8.2) and the first-order
semi-Lagrangian OUM (introduced in section 6); in this case, the convergence to the
viscosity solution follows from section 7. However, as of right now, we do not have
a proof of convergence for the general (higher-order) OUMs based on the Eulerian
discretization. We rely on general convergence considerations (see the remarks fol-
lowing the proof of Theorem 7.7) and on the numerical evidence (section 9.4 and
[39, 46]). In all of our numerical experiments the numerical solution U produced by
these methods converges to the viscosity solution of the original PDE. The rate of
convergence depends on the particular finite-difference operators used to approximate
wr(x) in (68).

9. Implementation and numerical results.

9.1. Implementation notes. An efficient implementation of the described nu-
merical methods for the anisotropic optimal-trajectory and front-propagation prob-
lems requires dealing with several algorithmic issues. Storing and sorting the current
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AcceptedFront, for example, has to be implemented rather carefully to enable efficient
search for the “AcceptedFront neighborhood” NF(x) for every Considered point x.
The inverse operation (searching for all Considered x such that x̄ ∈ NF(x)) is an-
other major component of the implementation. Efficient use of data structures allows
us to construct an algorithm with the computational complexity of O(ΥM logM).

The connection between a particular class of anisotropic front-propagation and
optimal-trajectory problems allows us to build both semi-Lagrangian and fully Eule-
rian single-pass methods. On a fixed mesh X, the computational complexity of these
methods will be the same. However, the overall efficiency of each program will be
affected by the chosen upwind-update-from-a-single-simplex formula. The optimal
choice depends on the particular speed functions F and f and on the details of im-
plementation: the semi-Lagrangian method requires performing a local minimization
at each mesh point (using (31)), whereas the finite-differences upwind update for-
mula requires finding the roots of the nonlinear equation (69). Generally, both the
minimization and the root-finding have to be done approximately, and the overall effi-
ciency depends on the particular numerical method used to compute the approximate
update. Our implementations used the “golden section search” and the Newton–
Raphson method to numerically resolve the control-theoretic and finite-difference up-
date formulas, respectively; the implementation details of these and other numerical
minimization and zero-finding techniques can be found in [42].

We note that the above complexity and efficiency discussion is limited to finding
a numerical solution on a fixed grid. The speed of convergence (of the numerical
approximation U(x) to the viscosity solution u(x) as the grid is refined) is a separate
issue. Thus, the availability of the higher-order accurate upwind update formulas is
a significant advantage of the Eulerian approach.

9.2. Using a local anisotropy coefficient. So far we have always used the
global bounds on the speed function 0 < F1 ≤ F (x,p) ≤ F2 for all p and x. We now
define the local bounds on F ,

F1(x) = min
p∈S1

F (x,p), F2(x) = max
p∈S1

F (x,p),

and the local anisotropy coefficient Υ(x) = F2(x)
F1(x) .

We note that many of the lemmas stated in section 3 for u(x) in terms of F1 and F2

can be restated in terms of F1(x) and F2(x). Most importantly, this is true for
Remark 3.7, which establishes a bound on the angle between the characteristic and
gradient directions. Thus, it is also possible to build the numerical method using
Υ(x) instead of Υ in the definition of NF(x). Moreover, if F is smooth and the
maximum/minimum in defining F1(x) and F2(x) are taken not just at the point but
over some closed ball B centered at x, then the resulting algorithm provably converges
to the viscosity solution. (Indeed, for small enough h, NF(x) ⊂ B even if NF (x) were
defined using the global anisotropy coefficient Υ.)

This observation leads to a substantially more efficient algorithm since the global
anisotropy coefficient Υ can be much larger than supx∈Ω Υ(x) for the front propagat-
ing in a strongly inhomogeneous medium.

9.3. Heuristic: Relaxing the update procedure. In the algorithm described
in section 6, there are two different situations in which the tentative value V (x) is
recomputed for a Considered point x:

• V (x) is first computed using the entire NF(x) at the moment when x is added
to Considered;
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• V (x) is then recalculated from at most two simplexes every time the newly
Accepted mesh point x̄ belongs to NF(x).

If the boundary condition for the PDE is nearly constant (i.e., if q2 ≤ q1 + h/f1,
where h is the diameter of the triangulated mesh), Lemma 7.3 shows that the AF will
also approximate the level set throughout the execution of the algorithm. On the other
hand, Lemma 3.4 shows that the optimal trajectory for x intersects a level set at some
point x̃ such that ‖x̃ − x‖ ≤ d1Υ, where d1 is the distance from x to that level set.
This means that if AF were exactly the level set, the initial evaluation of V (x) would
capture all the necessary information about all the potential characteristic directions
for x; thus, the further reevaluations of V (x) would not be necessary. Since AF
is only approximating the level set, capturing all the necessary directions requires
“widening” the set NF(x). Carefully combining Lemmas 7.3 and 3.4, and assuming
U ≈ u on AF , we can show that all the characteristic directions are still covered if
NF(x) is taken to be two times “wider”:

N̂F(x) = {xjxk ∈ AF | ∃x̃ on xjxk s.t. ‖x̃ − x‖ ≤ 2hΥ(x)} .

This still leads to the total of roughly 2Υ evaluations of Vs for each mesh point, but
it is no longer necessary to search for all Considered x such that x̄ ∈ NF(x) each
time a new x̄ is Accepted.13

Furthermore, an additional update relaxation can be used with the Eulerian
discretization-based methods if the boundary condition for the PDE is nearly con-
stant. In the initial computation of V (x) it is often not necessary to consider the
entire NF(x): we can stop as soon as we find xjxk ∈ NF(x) such that Vxj ,xk(x)
satisfies the upwinding conditions (see section 8.2.2). The viscosity solution u of the
Hamilton–Jacobi PDE is Lipschitz-continuous, and therefore ∇u exists almost every-
where. As shown in [46], if u is differentiable at the point x and the vehicle’s speed
profile Sf (x) is strictly convex, then there exists a unique optimizing control a(x).
Thus, away from the shocks, there should not be multiple simplexes in NF(x) pro-
ducing updates which satisfy the upwinding criteria.

For a fixed grid X, the numerical evidence suggests that the “relaxation” signifi-
cantly improves efficiency of the program. As the grid is refined, the numerical solu-
tion obtained by the “relaxed” scheme converges to the viscosity solution—sometimes
slower, but often (depending on the type of anisotropy) even faster than the solution
computed by the “full-update” scheme. However, the asymptotic order of accuracy of
the “relaxed” and “full-update” schemes seems to be the same in all of our numerical
experiments (e.g., see section 9.4.1).

9.4. Numerical experiments. In this section we consider several test prob-
lems, each of which can be described by a non-Eikonal (anisotropic) Hamilton–Jacobi
PDE. In each case, the speed function is assumed to be known from the characteriza-
tion of a particular application domain. For example, in the optimal-trajectory test
problem, f(x,a) reflects the assumptions about the speed of the controlled vehicle,
while in the seismic imaging test problem, the front-expansion speed F is derived
using the assumptions about the elliptical nature of the “impulse-response surface”
for the anisotropic medium.

9.4.1. Geodesic distances on manifolds. The first test problem is to find the
geodesic distance on a manifold z = g(x, y). As described in [21] and [36], this can

13The numerical experiments indicate that a much smaller “widening” of NF is sufficient in prac-
tice.
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be accomplished by approximating the manifold with a triangulated mesh and then
solving the distance equation ‖∇u‖ = 1 on that mesh. Since the latter equation is
Eikonal, the Fast Marching Method can be used to solve it efficiently. However, if one
desires to formulate the problem in the x − y plane instead of the intrinsic manifold
coordinates, then the corresponding equation for u is not Eikonal. Indeed, in the
x − y plane, the manifold’s geodesic distance function u has to satisfy (65) with the
speed function F defined as

F (x, y, ω) =

√
1 + g2

y cos
2(ω) + g2

x sin2(ω)− gxgy sin(2ω)

1 + g2
x + g2

y

,(72)

where ω is the angle between ∇u(x, y) and the positive direction of the x-axis. The
degree of anisotropy in this equation is substantial, since the dependence of F upon ω
can be pronounced when ∇g is relatively large.14

As shown in section 8.1, u can also be considered as a value function for the
corresponding min-time optimal-trajectory problem and must, therefore, satisfy (22).
The vehicle’s speed function f(x, y,a) can be defined by applying (67) to the speed of
front propagation F (x, y, ω). However, it is even easier to obtain f from the control-
theoretic considerations. If the vehicle moving with speed f(x, y,a) in the x-y plane
is just a shadow of another vehicle moving with a unit speed on the manifold, then
this vehicle’s speed profile is just an orthogonal projection of a unit circle from the
manifold’s tangent plane onto the x-y plane, i.e.,

f(x, y,a) = (1 + (∇g(x, y) · a)2)− 1
2 ,(73)

where a is a vector of unit length and f is the control-theoretic speed of motion in
the direction a (see section 3.1 and section 8.1 for details).

As an example, we consider the manifold g(x, y) = .9 sin(2πx) sin(2πy) and com-
pute the geodesic distance on it from the origin. The anisotropy coefficient for this
problem is Υ = F2

F1
=

√
100 + 324π2/10 ≈ 5.7. Since the analytical solution is not

available, we use the results of the tested method on the mesh with 385 × 385 mesh
points as an estimate of the “true” value function. This estimate is used to perform
the convergence analysis on coarser regular meshes in the x-y plane for the following:

M1: iterative solution to the first-order semi-Lagrangian scheme (25),
M2: OUM based on the first-order semi-Lagrangian scheme (section 6),
M3: same as M2, but with the “relaxed update” (section 9.3),
M4: OUM based on the first-order finite-differences scheme (section 8).

See Figure 5 for the level sets of the value function and for the table of error estimates.

9.4.2. First arrivals in inhomogeneous anisotropic medium. Finally, we
include an example of the first arrival travel times computation with applications
to seismic imaging. We start with a computational domain which suggests mate-
rial layering under a sinusoidal profile. The computational domain is the square
[−a, a]× [−a, a], with layer shapes

C(x) = A sin
(mπx

a
+ β

)
,(74)

where A is the amplitude of the sinusoidal profile, m is the number of periods, and
β is the phase offset. The domain is split into n layers by the curves yi(x) = C(x)+bi,
where i = 1, . . . , (n − 1).

14The algorithm presented in [21] using the manifold-approximating mesh is certainly more effi-
cient for this problem; here, it serves as a convenient test problem for the general anisotropic OUMs.



www.manaraa.com

358 JAMES A. SETHIAN AND ALEXANDER VLADIMIRSKY

50 100 150 200 250 300 350

50

100

150

200

250

300

350

L∞ Error 252 492 972 1932

M1 0.15474 0.05902 0.02619 0.00866
M2 0.36131 0.25581 0.13021 0.04195
M3 0.37647 0.25679 0.13070 0.04327
M4 0.36052 0.25940 0.13042 0.04174

L2 Error 252 492 972 1932

M1 0.05503 0.02281 0.01073 0.00381
M2 0.13918 0.09901 0.04876 0.01416
M3 0.14022 0.09848 0.04766 0.01374
M4 0.13749 0.09659 0.04626 0.01374

Fig. 5. The geodesic distance from the origin on the surface z = .9 sin(2πx) sin(2πy) computed
on the square [−.5, .5] × [−.5, .5] in the x-y plane. The error estimates were produced on refined
meshes taking the corresponding method on a 3852 mesh to be the true solution (hence the seemingly
higher-than-first-order rate at the end).

In each layer, the anisotropic speed profile Sf is given at every point (x, y) by
an ellipse with the bigger axis (of length 2F2) tangential to the curve C(x) and the
smaller axis (of length 2F1) normal to the curve. F1 and F2 are constants in each
layer. Thus, the ellipse’s orientation and shape depend on (x, y).

This leads to an anisotropic Hamilton–Jacobi equation of the form

‖∇u(x, y)‖F = 1, u(0, 0) = 0,(75)

where the front propagation speed at every point (x, y) is given by the formula

F (x, y, ux, uy) = F2

(
(1 + q2)u2

x + (1 + p2)u2
y − 2pquxuy

(1 + p2 + q2)(u2
x + u2

y)

)1/2

,(76)

with

[
p
q

]
=

√
(F2

F1
)2 − 1√

1 +
(
dC
dx (x)

)2
[

dC
dx (x)
−1

]
.

Formula (76) is derived using the the elliptical shape of Sf (x, y) and applying for-
mula (66) of section 8.1.

These calculations are performed using the OUMs with the control-theoretic and
finite-difference formulas for computing an update-from-a-single-simplex. Both meth-
ods produce numerical solutions converging to the value function of the corresponding
min-time optimal trajectory problem.

The equi-arrival curves shown in Figure 6 are obtained on a 193 × 193 regular
mesh using the following parameter values:

a = .5, A = .1225, m = 2, β = 0, and layer offsets bi = (−.25, 0, 0.25).

The max/min speed pair (F2, F1) for each layer is given in the figures. We note that
in one of these examples the global anisotropy coefficient Υ = 3

.2 = 15.
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Fig. 6. Seismic imaging test problem: equi-arrival curves in an inhomogeneous, multilayer
medium.

Remark 9.1. Since the speed function F is discontinuous across the layer bound-
aries, the standard viscosity solution results for the Hamilton–Jacobi–Bellman equa-
tion [10, 9] are not directly applicable. Thus, our proof of convergence in section 7
is not valid in this case either. Nevertheless, the produced numerical solutions seem
to converge to the true value function of the corresponding control problem. This is
not surprising since our methods are based on approximating Bellman’s optimality
principle, which is valid for a value function u under much more general assumptions
about the speed (or the cost) of motion.

9.5. Conclusions. The methods presented in this paper are applicable for the
static Hamilton–Jacobi–Bellman PDEs with convex Hamiltonian and finite speed
function bounded away from zero (see [46] for additional background information
and details of the proofs). We are currently working on extending these OUMs to a
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wider class of problems including treatment of nonconvex Hamiltonians, discontinu-
ous speed functions, degenerate speed profiles (i.e., f1 = 0), and stochastic control.
We also note that parallelizable single-pass methods based on the same upwinding
techniques may be built extending the ideas behind Dial’s algorithm for the shortest
path on the network.

We believe that similar decoupling techniques hold much promise for the nonlinear
problems for which the notion of “information propagation” is well defined.

Appendix. We present a proof of the causality property for the semi-Lagrangian
discretization of the Eikonal equation on an unstructured mesh with acute simplexes.
We begin by restating the discretization formula (25) for the n-dimensional simplex s
with the vertices at x,x1, . . . ,xn. If x̃ is a point on the x1 . . .xn face of the simplex,
we will use ζ = (ζ1, . . . , ζn) for its barycentric coordinates:

ζi ∈ [0, 1] for all i,

n∑
i=1

ζi = 1,

n∑
i=1

ζixi = x̃.

Using Ξ to denote the set of all possible barycentric coordinates, we can write the
isotropic version of the upwinding update formula (25):

Vs(x) = min
ζ∈Ξ

{
τ(ζ)

f(x)
+

n∑
i=1

ζiU(xi)

}
,(77)

where τ(ζ) = ‖x̃ − x‖. Define the unit directional vectors Pi = x−xi

‖x−xi‖ . To justify

using Dijkstra-like decoupling with this discretization, we prove the following version
of Property (4.1).

Property A.1 (Causality). If (Pj ·Pk) ≥ 0 for all j and k, and if ζ = (ζ1, . . . , ζn)
is the minimizer in formula (77), then “ζi > 0” implies “Vs > U(xi).”

Proof. Suppose ζi > 0 for all i ∈ {1, . . . , n}. (If that is not the case, the same
argument can be repeated for the lower-dimensional simplex on which all barycentric
coordinates are positive.)

Noting that ∂τ
∂ζi

(ζ) = (x−xi)·(x−x̃)
τ(ζ) , we can write the Kuhn–Tucker optimality

conditions for ζ as follows:

(x − xi) · (x − x̃)

τ(ζ)f(x)
+ U(xi) = λ for all i ∈ {1, . . . , n},(78)

where λ is the Lagrange multiplier. We note that

λ − U(xi) =
‖x − xi‖

∑n
j=1 ζj‖x − xj‖(Pi · Pj)

τ(ζ)f(x)
> 0,(79)

by the acuteness of simplex s and since ζi > 0. Next, we note that, multiplying (78)
by ζi and summing over all i’s,

λ = λ

(
n∑
i=1

ζi

)
=

(
∑n

i=1 ζi(x − xi)) · (x − x̃)

τ(ζ)f(x)
+

n∑
i=1

ζiU(xi) =
τ(ζ)

f(x)
+

n∑
i=1

ζiU(xi) = Vs.

(80)

Thus, Vs > U(xi) follows from (79).
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We note that the proof holds on an arbitrary “acute” unstructured mesh in Rn

and on manifolds. The “splitting section” techniques developed for the Fast March-
ing Method can also be used to implement Dijkstra-like decoupling of the above
discretization on meshes with obtuse simplexes; see [21, 38] for details.

Finally, to explore the connection between semi-Lagrangian and finite-difference
schemes, we further consider a column vector w, with the entries wi = (Vs −U(xi))/
‖x − xi‖. Using formula (79) and a matrix P whose rows are Pi’s, we see that

w=
1

τ(ζ)f(x)
P (x−x̃) ⇒ P−1w=

x − x̃

τ(ζ)f(x)
⇒ wT

(
PPT

)−1
w=

‖x − x̃‖2

(τ(ζ)f(x))
2 =

1

f2(x)
.

The latter is a quadratic equation in Vs and coincides with the particular first-order
finite-difference upwind formula chosen in [38] for the isotropic front-propagation prob-
lems.

Furthermore, the analogous correspondence can be demonstrated for the first-
order schemes in the anisotropic case. Starting from the general first-order semi-
Lagrangian formula

Vs(x) = min
ζ∈Ξ

{
τ(ζ)

f(x, x̃−x
τ(ζ) )

+

n∑
i=1

ζiU(xi)

}
,(81)

where τ(ζ), x̃, Pi, and wi are defined as above, we note that

0 = min
ζ∈Ξ

{
τ(ζ)

f(x, x̃−x
τ(ζ) )

+

n∑
i=1

ζi (U(xi)−Vs(x))

}

= max
ζ∈Ξ

{
n∑
i=1

ζi (Vs(x)−U(xi))− τ(ζ)

f(x, x̃−x
τ(ζ) )

}
.

Moreover, since

n∑
i=1

ζi (Vs(x)− U(xi)) =

n∑
i=1

(ζi‖x − xi‖)wi

=

n∑
i=1

(
ζi(x − xi)

TP−1
)
wi = (x − x̃)

T
(P−1w),

we have

max
ζ∈Ξ

{
τ(ζ)

f(x, x̃−x
τ(ζ) )

[((
− x̃ − x

τ(ζ)

)
· P−1w

‖P−1w‖
)
‖P−1w‖f

(
x,

x̃ − x

τ(ζ)

)
− 1

]}
= 0.

Since both functions τ and f are strictly positive, the above is equivalent to

max
ζ∈Ξ

{[(
− x̃ − x

τ(ζ)

)
· P−1w

‖P−1w‖
]
‖P−1w‖f

(
x,

x̃ − x

τ(ζ)

)
− 1

}
= 0

or, more conveniently,

‖P−1w‖max
ζ∈Ξ

{[(
− x̃ − x

τ(ζ)

)
· P−1w

‖P−1w‖
]

f

(
x,

x̃ − x

τ(ζ)

)}
= 1.(82)
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Let n = P−1w
‖P−1w‖ . We note that, as ζ varies, a = x̃−x

τ(ζ) covers all directions within this

simplex; moreover, the ζ minimizing (81) will also be the maximizer for (82). If all the
ζi’s are positive, then the corresponding a yields a local maximum of the expression
(−a · n)f(x,a). As discussed in section 8.1, such a local maximum is unique if Sf is
convex; thus, by the formula (66), equation (82) is equivalent to

‖P−1w‖F
(

x,
P−1w

‖P−1w‖
)

= 1.

Finally, the square of this expression is a variant of the finite-difference formula (69)
obtained for the first-order Eulerian discretization in section 8.2.1. The upwinding
criterion required for the latter scheme is equivalent to verifying that all ζi’s are
positive.

As of right now, we are unaware of any such connections between the higher-order
semi-Lagrangian and Eulerian schemes for the Eikonal or general Hamilton–Jacobi–
Bellman equations.
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